首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 μg Cry1Ac/g diet but killed by Cry1Ab at 0.5 μg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 μg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.  相似文献   

2.
Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with (125)I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ja bound to a common binding site that was not shared by the other toxins tested. Reciprocal competition experiments with Cry1Ab, Cry1Ac, and Cry1Ja showed that these toxins do not bind to any additional binding sites. In the resistant strain, binding of (125)I-Cry1Ac was not significantly affected; however, (125)I-Cry1Ab did not bind to the BBMV. This result, along with previous data from this strain, shows that the resistance fits the "mode 1" pattern of resistance described previously in Plutella xylostella, Plodia interpunctella, and Heliothis virescens.  相似文献   

3.
Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.  相似文献   

4.
昆虫中肠对Bt原毒素活化与对活化毒素降解的变化被认为是害虫对Bt产生的机制之一,研究比较棉铃虫Helicoverpa armigera(Hübner)与甜菜夜蛾Spodoptera exigua(Hübner)的中肠液、BBMV蛋白酶的活性,通过SDS-PAGE分析2种昆虫对原毒素的活化速度与对活化毒素的降解速度。2种昆虫的中肠液蛋白酶活性均显著高于BBMV蛋白酶活性,中肠液与BBMV均能迅速活化原毒素并继续降解活化后的毒素,与中肠液相比,BBMV对原毒素的活化与对活化毒素的降解均慢于中肠液,甜菜夜蛾对毒素的活化与降解又慢于棉铃虫。另外,还测定抑制剂对中肠液蛋白酶活性的抑制作用,结果表明,各抑制剂对棉铃虫和甜菜夜蛾相应酶活性的抑制表现出相同的趋势,TLCK对丝氨酶蛋白酶具较好的抑制作用,而PMSF对胰蛋白酶的抑制作用次之,TPCK对胰凝乳蛋白酶的抑制作用较弱。  相似文献   

5.
昆虫中肠对Bt原毒素活化与对活化毒素降解的变化被认为是害虫对Bt产生的机制之一,研究比较棉铃虫Helicoverpa armigern(Hǔbner)与甜菜夜蛾Spodoptera exigm(Hǔbner)的中肠液、BBMV蛋白酶的活性,通过SDS-PAGE分析2种昆虫对原毒素的活化速度与对活化毒素的降解速度。2种昆虫的中肠液蛋白酶活性均显著高于BBMV蛋白酶活性,中肠液与BBMV均能迅速活化原毒素并继续降解活化后的毒素,与中肠液相比,BBMV对原毒素的活化与对活化毒素的降解均慢于中肠液,甜菜夜蛾对毒素的活化与降解又慢于棉铃虫。另外,还测定抑制剂对中肠液蛋白酶活性的抑制作用,结果表明,各抑制剂对棉铃虫和甜菜夜蛾相应酶活性的抑制表现出相同的趋势,TLCK对丝氨酶蛋白酶具较好的抑制作用,而PMSF对胰蛋白酶的抑制作用次之,TPCK对胰凝乳蛋白酶的抑制作用较弱。  相似文献   

6.
The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.  相似文献   

7.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.  相似文献   

8.
9.
The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.  相似文献   

10.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.  相似文献   

11.
【目的】Cry1A和Cry2A类Bt蛋白通过特异性地与昆虫中肠上的受体蛋白结合而发挥杀虫作用,现已广泛应用于转基因抗虫作物。本研究旨在进一步明确Cry2A类蛋白的作用机制和Cry1A受体蛋白在Cry2A发挥毒力中的作用。【方法】本研究首先提取了棉铃虫Helicoverpa armigera的BBMV,制备了钙粘蛋白(CAD)、氨肽酶N(APN)和碱性磷酸酯酶(ALP)3种受体蛋白的抗体和抗血清;然后,利用Western blot检测BBMV上这3种受体蛋白后,利用抗体封闭技术比较了敏感棉铃虫和Cry1Ac抗性棉铃虫(BtR)中3种受体蛋白的抗血清对Cry1Ac和Cry2Aa毒力的影响。【结果】对敏感品系棉铃虫,这3种已知的Cry1Ac受体蛋白抗血清显著地降低了Cry1Ac和Cry2Aa的毒力。其中APN抗血清对Cry1Ac毒力的影响最大,棉铃虫幼虫的死亡率降低了84.44%;ALP抗血清对Cry2Aa的毒力影响最大,棉铃虫幼虫死亡率比对照降低了71.04%。Cry1Ac对Cry1Ac抗性棉铃虫(BtR)的毒力显著降低,Cry2Aa的毒性也减弱。在Cry1Ac抗性棉铃虫(BtR)中,3种受体抗血清对Cry1Ac的影响比在敏感棉铃虫中的影响小,尤其是CAD和APN抗血清对Cry1Ac毒力的抑制率显著低于在敏感棉铃虫中的抑制作用;CAD和ALP抗血清对Cry2Aa毒力的影响与在敏感棉铃虫中的影响差异不显著,但APN抗血清可以显著降低Cry2Aa对Cry1Ac抗性棉铃虫(BtR)的毒力。【结论】棉铃虫CAD,APN和ALP不仅参与了Cry1Ac的杀虫过程,也对Cry2Aa毒力有一定的影响,而且这3种蛋白可能与棉铃虫对Cry1Ac和Cry2Aa产生抗性及交互抗性相关。  相似文献   

12.
Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance to the Cry3Aa toxin of B. thuringiensis subsp. tenebrionis. Histological examination revealed that the structural integrity of the midgut tissue in the toxin-resistant (R) insect was retained whereas the same tissue was devastated by toxin action in the susceptible (S) strain. Function-based activity profiling using zymographic gels showed specific proteolytic bands present in midgut extracts and brush border membrane vesicles (BBMV) of the R strain not apparent in the S strain. Aminopeptidase activity associated with insect midgut was higher in the R strain than in the S strain. Enzymatic processing of toxin did not differ in either strain and, apparently, is not a factor in resistance. BBMV from the R strain bound approximately 60% less toxin than BBMV from the S strain, whereas the kinetics of toxin saturation of BBMV was 30 times less in the R strain than in the S strain. However, homologous competition inhibition binding of (125)I-Cry3Aa to BBMV did not reveal any differences in binding affinity (K(d) approximately 0.1 microM) between the S and R strains. The results indicate that resistance by the CPB to the Cry3Aa toxin correlates with specific alterations in protease activity in the midgut as well as with decreased toxin binding. We believe that these features reflect adaptive responses that render the insect refractory to toxin action, making this insect an ideal model to study host innate responses and adaptive changes brought on by bacterial toxin interaction.  相似文献   

13.
The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated, and the Cry2Ab resistance trait was introgressed into a susceptible laboratory strain to facilitate comparative analysis of the Cry2Ab resistance with the susceptible T. ni strain. Results from biochemical analysis showed no significant difference between the Cry2Ab-resistant and -susceptible T. ni larvae in midgut proteases, including caseinolytic proteolytic activity and zymogram profile and serine protease activities, in midgut aminopeptidase and alkaline phosphatase activity, and in midgut esterases and hemolymph plasma melanization activity. For analysis of genetic linkage of Cry2Ab resistance with potential Cry toxin receptor genes, molecular markers for the midgut cadherin, alkaline phosphatase (ALP), and aminopeptidase N (APN) genes were identified between the original greenhouse-derived dual-toxin-resistant and the susceptible laboratory T. ni strains. Genetic linkage analysis showed that the Cry2Ab resistance in T. ni was not genetically associated with the midgut genes coding for the cadherin, ALP, and 6 APNs (APN1 to APN6) nor associated with the ABC transporter gene ABCC2. Therefore, the Cry2Ab resistance in T. ni is conferred by a novel but unknown genetic mechanism.  相似文献   

14.
Retrotransposon-mediated disruption of the BtR-4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to high levels of resistance in the YHD2 strain to Cry1Ac toxin from Bacillus thuringiensis. This suggests that HevCaLP functions as a Cry1Ac toxin receptor on the surface of midgut cells in susceptible larvae and that the BtR-4 gene disruption eliminates this protein in resistant larvae. However, Cry1Ac toxin binding to HevCaLP is yet to be reported. We used the polymerase chain reaction and immunoblotting as tools to discriminate between individual H. virescens larval midguts from susceptible (YDK) and resistant (CXC, KCBhyb, and YHD2-B) strains according to their BtR-4 gene disruption genotype and phenotype. This approach allowed us to test the correlation between BtR-4 gene disruption, lack of HevCaLP, and altered Cry1A toxin binding. Toxin-binding assays using brush border membrane vesicles revealed that a wild-type BtR-4 allele is necessary for HevCaLP production and Cry1Aa toxin binding, while most of Cry1Ab and Cry1Ac binding was independent of the BtR-4 genotype. Moreover, toxin competition experiments show that KCBhyb midguts lacking HevCaLP are more similar to midguts of the original YHD2 strain than to the current YHD2-B strain. This resolves discrepancies in published studies of Cry1A binding in YHD2 and supports our earlier suggestion that a separate genetic change occurred in YHD2 after appearance of the cadherin disruption, conferring even higher resistance in the resulting YHD2-B strain as well as a large reduction in Cry1Ab and Cry1Ac binding.  相似文献   

15.
Binding of the Bacillus thuringiensis Cry1Ac toxin to specific receptors in the midgut brush border membrane is required for toxicity. Alteration of these receptors is the most reported mechanism of resistance. We used a proteomic approach to identify Cry1Ac binding proteins from intestinal brush border membrane (BBM) prepared from Heliothis virescens larvae. Cry1Ac binding BBM proteins were detected in 2D blots and identified using peptide mass fingerprinting (PMF) or de novo sequencing. Among other proteins, the membrane bound alkaline phosphatase (HvALP), and a novel phosphatase, were identified as Cry1Ac binding proteins. Reduction of HvALP expression levels correlated directly with resistance to Cry1Ac in the YHD2-B strain of H. virescens. To study additional proteomic alterations in resistant H. virescens larvae, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) to compare three independent resistant strains with a susceptible strain. Our results validate the use of proteomic approaches to identify toxin binding proteins and proteome alterations in resistant insects.  相似文献   

16.
分离和鉴定二化螟Chilo suppresalis幼虫中肠刷状缘膜囊泡(BBMV)中Cry1A毒素的受体蛋白,对于阐明Cry1A毒素作用机理和二化螟抗性机理具有十分重要的意义。为此,本文就Cry1A毒素对二化螟杀虫活性及Cry1Ac与二化螟中肠受体的配基结合进行了研究。结果表明: Cry1Ab对二化螟室内品系(CN)的毒力高于Cry1Ac,而Cry1Ac高于Cry1Aa。配基结合分析表明二化螟CN品系幼虫中肠BBMV中有6个Cry1Ac结合蛋白(分子量分别为50,70,90,120,160和180 kDa), 其中180,160和90 kDa结合蛋白的条带颜色明显深于其他结合蛋白的条带,表明这3个受体蛋白具有较高的结合浓度。同源竞争结合研究表明,180和90 kDa结合蛋白为Cry1Ac的低亲合性结合蛋白,其他4个为高亲合性结合蛋白。为了研究Cry1Ac和Cry1Ab受体结合部位的相互作用,进行了异源竞争结合研究。Cry1Ab可以与Cry1Ac所有的6个结合蛋白进行竞争性结合,与180,120,70和50 kDa结合蛋白具有高亲合性,而与160和90 kDa结合蛋白具有低亲合性。结果显示,Cry1Ac与Cry1Ab在二化螟幼虫中肠BBMV上拥有多个共享的结合位点,但对每个结合位点的亲合性有差异。基于毒素结合部位的相似性,Cry1Ac和Cry1Ab不宜同时用于转基因Bt水稻来控制二化螟。  相似文献   

17.
Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac   总被引:4,自引:0,他引:4  
Laboratory selection increased resistance of pink bollworm (Pectinophora gossypiella) to the Bacillus thuringiensis toxin Cry1Ac. Three selections with Cry1Ac in artificial diet increased resistance from a low level to >100-fold relative to a susceptible strain. We used artificial diet bioassays to test F1 hybrid progeny from reciprocal crosses between resistant and susceptible strains. The similarity between F1 progeny from the two reciprocal crosses indicates autosomal inheritance of resistance. The dominance of resistance to Cry1Ac depended on the concentration. Resistance was codominant at a low concentration of Cry1Ac, partially recessive at an intermediate concentration, and completely recessive at a high concentration. Comparison of the artificial diet results with previously reported results from greenhouse bioassays shows that the high concentration of Cry1Ac in bolls of transgenic cotton is essential for achieving functionally recessive inheritance of resistance.  相似文献   

18.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 microg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 microg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 microg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

19.
Resistance to transgenic cotton, Gossypium hirsutum L., producing Bacillus thuringiensis (Bt) toxin Cry1Ac is linked with three recessive alleles of a cadherin gene in laboratory-selected strains of pink bollworm, Pectinophora gossypiella (Saunders), a major cotton pest. Here, we analyzed a strain (MOV97-R) with a high frequency of cadherin resistance alleles, a high frequency of resistance to 10 microg of Cry1Ac per milliliter of diet, and an intermediate frequency of resistance to 1000 microg of Cry1Ac per ml of diet. We selected two strains for increased resistance by exposing larvae from MOV97-R to diet with 1000 microg of Cry1Ac per ml of diet. In both selected strains, two to three rounds of selection increased survival at 1000 microg of CrylAc per ml of diet to at least 76%, indicating genetic variation in survival at this high concentration and yielding >4300-fold resistance relative to a susceptible strain. Variation in cadherin genotype did not explain variation in survival at 1000 microg of Cry1Ac per ml of diet, implying that one or more other loci affected survival at this concentration. This conclusion was confirmed with results showing that when exposure to Cry1Ac stopped, survival at 1000 microg of Cry1Ac per ml of diet dropped substantially, but survival at 10 microg Cry1Ac per ml of diet remained close to 100% and all survivors had two cadherin resistance alleles. Although survival at 1000 microg of Cry1Ac per ml of diet is not required for resistance to Bt cotton, understanding how genes other than cadherin confer increased survival at this high concentration may reveal novel mechanisms of resistance.  相似文献   

20.
Bacillus thuringiensis Cry1Ac insecticidal toxin binds specifically to 120kDa aminopeptidase N (APN) (EC 3.4.11.2) in the epithelial brush border membrane of Manduca sexta midguts. The isolated 120-kDa APN is a member of a functional Cry1 toxin receptor complex (FEBS Lett. 412 (1997) 270). The 120-kDa form is glycosyl-phosphatidylinositol (GPI) anchored and converted to a 115-kDa form upon membrane solubilization. The 115-kDa APN also binds Cry1A toxins and Cry1Ac binding is inhibited by N-acetylgalactosamine (GalNAc). Here we determined the monosaccharide composition of APN. APN is 4.2mol% carbohydrate and contains GalNAc, a residue involved in Cry1Ac interaction. APN remained associated with non-covalently bound lipids through anion-exchange column purification. Most associated lipids were separated from APN by hydrophobic interaction chromatography yielding a lipid aggregate. Chemical analyses of the lipid aggregate separated from APN revealed neutral lipids consisting mostly of diacylglycerol and free fatty acids. The fatty acids were long, unsaturated chains ranging from C:14 to C:22. To test the effect of APN-associated lipids on Cry1Ac function, the lipid aggregate and 115-kDa APN were reconstituted into phosphatidylcholine (PC) vesicles. The lipid aggregate increased the amount of Cry1Ac binding, but binding due to the lipid aggregate was not saturable. In contrast the lipid aggregate promoted Cry1Ac-induced release of 86Rb(+) at the lowest Cry1Ac concentration (50nM) tested. The predominant neutral lipid component extracted from the lipid aggregate promoted Cry1Ac-induced 86Rb(+) release from membrane vesicles in the presence of APN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号