首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work focuses on the thermodynamic interpretation of the lauryl oleate biosynthesis in high-pressure carbon dioxide. Lipase-catalyzed lauryl oleate production by oleic acid esterification with 1-dodecanol over immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) was successfully performed in a sapphire window batch stirred tank reactor (BSTR) using dense CO(2) as reaction medium. The experiments were planned to elucidate the pressure effect on the reaction performance. With increasing the pressure up to 10 MPa, the catalytic efficiency of the studied enzyme improved rising up to a maximum and decreased at higher pressure values. Kinetic observations, exhibiting that dense CO(2) expanded reaction mixture in subcritical conditions led to higher performance than when diluted in a single supercritical phase, were elucidated by phase-equilibrium arguments. The experimental results were justified with emphasis on thermodynamic interpretation of the studied system. Particularly, the different reaction performances obtained were related to the position of the operating point with respect to the location of liquid-vapor phase boundaries of the reactant fatty acid/alcohol/CO(2) ternary system. The outlook for exploitation of CO(2) expanded phase at lower pressure compared to supercritical phase, with heterogeneous system in which the solid catalyst particles are exposed to dense CO(2) expanded reaction mixture, in developing new biotransformation schemes is promising.  相似文献   

2.
Biocatalytic transesterification of methylmethacrylate is possible in many different solvents. The reaction rate is readily controlled by variation in solvent physical properties. The reaction proceeds better in hydrophobic solvents, and activity can be restored in hydrophilic solvents by the addition of water. We have now demonstrated that supercritical carbon dioxide is not a good solvent for the reaction between 2-ethlhexanol and methylmethacrylate. It apperars that the supercritical carbon dioxide may either alter the pH of the microaqueous environment associated with the protein or reversibly form covalent complexes with free amine groups on the surface of the enzyme. Although supercritical carbon dioxide is a poor solvent for acrylate transesterification, many other supercritical fluids (ethane, ethylene, sulfur hexafluoride, and fluoroform) are better than most conventional solvents. In supercritical ethane it is possible to control the activity of the enzyme by changing pressure, and the enzyme appears to follow Michaelis-Menten Kinetics. We find that sulfur hexafluoride, the first anhydrous inorganic solvent in which biocatalytic activity has been reported, is a better solvent than any conventional or supercritical organic fluid tested.  相似文献   

3.
The thermal stability and activity of enzymes in supercritical carbon dioxide (SC CO(2)) and near-critical propane were studied at a pressure of 300 bar in the temperature range 20-90 degrees C. Proteinase from Carica papaya was incubated in microaqueous SC CO(2) at atmospheric pressure in a nonaqueous system. Lipase stability in an aqueous medium at atmospheric pressure and in SC CO(2) as well as near-critical propane at 100 bar and 40 degrees C was studied. In order to investigate the impact of solvent on lipases, these were chosen from different sources: Pseudomonas fluorescences, Rhizpous javanicus, Rhizopus niveus and porcine pancreas. On the basis of our previous study on lipase activities in dense gases, a high-pressure continuous flat-shape membrane reactor was designed. The hydrolysis of sunflower oil in SC CO(2) was performed as a model reaction in this reactor. The reaction was catalyzed by the lipase preparation Lipolase 100T and was performed at 50 degrees C and 200 bar.  相似文献   

4.
We have previously demonstrated that the activity of the lipase (Candida cylindracea) catalyzed transesterification reaction between methylmethacrylate and 2-ethylhexanol in supercritical carbon dioxide is comparatively low. In this article, we have investigated the same reaction in supercritical carbon dioxide with a special emphasis on determining the extent of any interaction between the enzyme and carbon dioxide. Transesterification reaction rates in hexane and supercritical carbon dioxide are compared at different temperatures. In supercritical carbon dioxide, temperature was found to have no significant effect on reaction rate in the range of 40 degrees to 55 degrees C. Above 55 degrees C, however, the reaction rate increased significantly as a function of temperature. It appears that carbon dioxide forms reversible complexes with the free amine groups on the surface of the enzyme. Direct evidence of modification was obtained using mass spectroscopy to detect the extent of modification of a pure protein. The kinetics of the reaction have been studied in hexane, and they obey a ping-pong bi-bi mechanism with inhibition by 2-ethylhexanol. The effect of bubbling carbon dioxide and/or fluoroform on the reaction rate in hexane at different temperatures suggests that the enzyme undergoes shear inactivation in hexane. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Oxygenation of carbon monoxide by bovine heart cytochrome c oxidase   总被引:1,自引:0,他引:1  
Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1), as the terminal enzyme of the mammalian mitochondrial electron transport chain, has long been known to catalyze the reduction of dioxygen to water. We have found that when reductively activated in the presence of dioxygen, the enzyme will also catalyze the oxidation of carbon monoxide to its dioxide. Two moles of carbon dioxide is produced per mole of dioxygen, and similar rates of production are observed for 1- and 2-electron-reduced enzyme. If 13CO and O2 are used to initiate the reaction, then only 13CO2 is detected as a product. With 18O2 and 12CO, only unlabeled and singly labeled carbon dioxide are found. No direct evidence was obtained for a water-gas reaction (CO + H2O----CO2 + H2) of the oxidase with CO. The CO oxygenase activity is inhibited by cyanide, azide, and formate and is not due to the presence of bacteria. Studies with scavengers of partially reduced dioxygen show that catalase decreases the rate of CO oxygenation.  相似文献   

6.
We hypothesized that the acute ventilatory response to hypoxia is enhanced after exposure to episodic hypoxia in awake humans. Eleven subjects completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (Pet(CO(2))) below 25 Torr. Subjects then breathed from a bag containing normocapnic (42 Torr), low (50 Torr), or high oxygen (140 Torr) gas mixtures. During the trials, Pet(CO(2)) increased while a constant oxygen level was maintained. The point at which ventilation began to rise in a linear fashion as Pet(CO(2)) increased was considered to be the ventilatory recruitment threshold. The ventilatory response below and above the recruitment threshold was determined. Ventilation did not persist above baseline values immediately after exposure to episodic hypoxia; however, Pet(CO(2)) levels were reduced compared with baseline. In contrast, compared with baseline, the ventilatory response to progressive increases in carbon dioxide during rebreathing trials in the presence of low but not high oxygen levels was increased after exposure to episodic hypoxia. This increase occurred when carbon dioxide levels were above but not below the ventilatory recruitment threshold. We conclude that long-term facilitation of ventilation (i.e., increases in ventilation that persist when normoxia is restored after episodic hypoxia) is not expressed in awake humans in the presence of hypocapnia. Nevertheless, despite this lack of expression, the acute ventilatory response to hypoxia in the presence of hypercapnia is increased after exposure to episodic hypoxia.  相似文献   

7.
The enantioselective esterification of racemic ibuprofen with n-propanol by immobilized Mucor miehel lipase in supercritical carbon dioxide was studied. The enantiomeric excess of the product (eep) was 70 % at 15...20 % conversion. The enantioselectivity was faintly affected by temperature and the concentration of ibuprofen and lipase. The optimum temperature was 45 °C. The initial reaction rate increased with pressure, but enantioselectivity was not affected by pressure changes. The reaction rates in supercritical carbon dioxide at optimized conditions and in n-hexane were similar.  相似文献   

8.
利用超临界CO2萃取微孔草籽油,并对籽油进行了HPLC/MS分析。实验确定的最佳超临界CO2流体萃取条件是:萃取温度45℃,萃取压力20MPa,CO2流量为35-40kg/h,萃取时间120min,在此条件下白刺籽油的萃取率为16.12%。利用HPLC/MS对微孔草籽油分析,发现其不饱和脂肪酸的相对含量高达73.19%。比较了超临界CO2萃取微孔草籽油油样和石油醚萃取微孔草籽油油样的理化性质,发现超临界CO2流体萃取的籽油质量优于传统溶剂萃取的籽油。  相似文献   

9.
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport.  相似文献   

10.
From the comparation of esterification between oleic acid and oleyl alcohol, catalyzed by the Mucor miehei immobilized lipase in a batch stirred tank reactor, in a solvent free system and system where the solvent was supercritical carbon dioxide it is obvious that reaction rates are higher at supercritical conditions than in the solvent free system. To obtain the data on the solubility of substrates and product (oleyl oleate) in supercritical carbon dioxide, fluid phase equilibria measurements in the static equilibrium cell have been done. The results showed that the temperature change between 30 d`C and 50 d`C doesn't affect the solubility of the substances in SC CO2 very much, but with higher pressure (between 100 and 300 bar) the solubilities of oleic acid, oleyl alcohol and oleyl oleate slightly increase. From the data it is obvious that oleic acid and oleyl alcohol have better solubility in supercritical CO2 than oleyl oleate and therefore the separation of both substrates from oleyl oleate with supercritical CO2 is possible-Key words: esterification, supercritical fluids, lipase.  相似文献   

11.
The ternary effects of transpiration rate on the rate of assimilation of carbon dioxide through stomata, and on the calculation of the intercellular concentration of carbon dioxide, are now included in standard gas exchange studies. However, the equations for carbon isotope discrimination and for the exchange of oxygen isotopologues of carbon dioxide ignore ternary effects. Here we introduce equations to take them into account. The ternary effect is greatest when the leaf-to-air vapour mole fraction difference is greatest, and its impact is greatest on parameters derived by difference, such as the mesophyll resistance to CO(2) assimilation, r(m) . We show that the mesophyll resistance to CO(2) assimilation has been underestimated in the past. The impact is also large when there is a large difference in isotopic composition between the CO(2) inside the leaf and that in the air. We show that this partially reconciles estimates of the oxygen isotopic composition of CO(2) in the chloroplast and mitochondria in the light and in the dark, with values close to equilibrium with the estimated oxygen isotopic composition of water at the sites of evaporation within the leaf.  相似文献   

12.
The role of carbon dioxide (CO(2)) as a signal in biochemical regulation networks of plants is fathomed. Transport mechanisms of CO(2) and HCO3- are surveyed, which are the prerequisite for signalling. A CO(2) sensor is not known to date, but any reaction where CO(2)/HCO3- is a substrate can be a candidate. Carbon concentrating mechanisms, e.g., in higher plants C(4)-photosynthesis and crassulacean acid metabolism (CAM), generate high internal CO(2) concentrations, important for photosynthesis, but also as a basis for signalling via diffusion of CO(2). Spatiotemporal dynamics of desynchronization/synchronization of photosynthetic activity over leaves can be followed by chlorophyll fluorescence imaging. One example of desynchronization is based on patchiness of stomatal opening/closing in heterobaric leaves due to anatomic constraints of lateral CO(2) diffusion. During CAM, largely different internal CO(2) concentrations prevail in the leaves, offering opportunities to study the effect of lateral diffusion of CO(2) in synchronizing photosynthetic activity over the entire leaves.  相似文献   

13.
Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.  相似文献   

14.
Cashew nut shell liquid (CNSL) represents the largest readily available bioresource of alkenyl phenolic compounds. In this work, separation of CNSL from the pericarp of the cashew nut with supercritical carbon dioxide was studied. In the initial extractions with CO(2) at 40-60 degrees C and at pressures from 14.7 to 29.4 MPa, low yields were obtained. However, when the extractions were performed with one or more intermediate depressurization steps, the yield of CNSL increased to as high as 94%. Most of the oil did not separate from the shell during the depressurization step, but was obtained during the subsequent repressurization. The CNSL extract had a clear light brownish pink color and exhibited no evidence of polymerization or degradation. The pressure profile extraction method proposed in this work increases the possible CNSL extraction yields and greatly reduces the amount of CO(2) required for CNSL separation.  相似文献   

15.
1. Unicellular algae possessing a hydrogenase system (Scenedesmus and other species), and having been adapted by anaerobic incubation to the hydrogen metabolism, reduce oxygen to water according to the equation O2 + 2H2 → 2H2O. 2. The oxyhydrogen reaction proceeds undisturbed only in the presence of carbon dioxide, which simultaneously is reduced according to the equation CO2 + 2H2 → H2O + (CH2O) = (carbohydrate). 3. The maximum yield of the induced reduction is one-half molecule of carbon dioxide reduced for each molecule of oxygen absorbed. 4. Partial reactions are recognizable in the course of the formation of water and it is with the absorption of the second equivalent of hydrogen that the carbon dioxide reduction appears to be coupled. 5. The velocity of the reaction increases in proportion to the partial pressure of oxygen, but only up to a certain point where any excess of oxygen causes the inactivation of the hydrogenase system. The reaction then ends prematurely. 6. During the oxyhydrogen reaction little or no oxygen is consumed for normal respiratory processes. 7. Small concentrations of cyanide, affecting neither photosynthesis nor photoreduction in the same cells, first inhibit the induced reduction of carbon dioxide and then lead to a complete inactivation of the hydrogenase system. 8. Hydroxylamine, added after adaptation, has either no inhibitory effect at all, or prevents solely the induced reduction of carbon dioxide without inactivating the hydrogenase system. 9. Dinitrophenol prevents the dark reduction of carbon dioxide while the reduction of oxygen continues to the formation of water. 10. Glucose diminishes the absorption of hydrogen, probably in its capacity as a competing hydrogen donor. 11. The induced reduction of carbon dioxide can be described as an oxido-reduction similar to that produced photochemically in the same cells.  相似文献   

16.
The influence of solar irradiance and carbon dioxide molar fraction of injected CO(2)-air mixtures on the behavior of outdoor continuous cultures of the microalga Phaeodactylum tricornutum in tubular airlift photobioreactors was analyzed. Instantaneous solar irradiance, pH, dissolved oxygen, temperature, biomass concentration, and the mass flow rates of both the inlet and outlet oxygen and carbon with both the liquid and gas phases were measured. In addition, elemental analysis of the biomass and the cell-free culture medium was performed. The oxygen production rate and carbon dioxide consumption rate increased hyperbolically with the incident solar irradiance on the reactor surface. Carbon losses showed a negative correlation with the daily variation of the carbon dioxide consumption rate. The maximum CO(2) uptake efficiency was 63% of the CO(2) supplied when the CO(2) concentration in the gas supplied was 60% v/v. Carbon losses were >100% during the night, due to CO(2) production by respiration, and hyperbolically decreased to values of 10% to 20% in the midday hours. An increase in the carbon fixed in the biomass with the solar cycle was observed. A slight daily decrease of carbon content of the cell-free culture medium indicated the existence of carbon accumulation in the culture. A decrease in CO(2) molar fraction in the injected gas had a double benefit: first, the biomass productivity of the system was enhanced from 2.05 to 2.47 g L(-1) day(-1) by reduction of CO(2) inhibition and/or pH gradients; and second, the carbon losses during the daylight period were reduced by 60%. The fluid dynamics in the reactor also influenced the carbon losses: the higher the liquid flow rate the higher the carbon losses. By using a previous mass transfer model the experimental results were simulated and the usefulness of this method in the evaluation and scale-up of tubular photobioreactors was established.  相似文献   

17.
1. The effects of carbon dioxide, oxygen and pH on the inversion intensity of phototaxis of Chlamydomonas reinhardtii have been investigated. 2. With decreasing with CO2 tension the inversion intensity is decreased. 3. The gassing with CO2 can be substituted by hydrogencarbonate only to a small extent (20%). On the other hand, the effect of decreasing CO2 tension can be prevented also only in part by adjusting the pH to about 6.5-7.0. Thus the effect of CO2 on the inversion intensity of phototaxis is obviously a composite of a true CO2 effect and an effect of the concomitant pH change. 4. Oxygen has only a slight effect. In presence of oxygen (air) the phototactic reaction values are somewhat lower than in its absence. 5. Under certain conditions circadian rhythms seem to be initiated by changing oxygen as well as CO2 tensions. 6. Based on these results some contradictory results of older investigations are discussed.  相似文献   

18.
In this study, various molecular dynamics simulations were conducted to investigate the effect of supercritical carbon dioxide on the structural integrity of hen egg white lysozyme. The analyses of backbone root-mean-square deviation, radius of gyration, and secondary structure stability all show that supercritical CO(2) exhibits the ability to increase the stability of this protein, probably as a result of the solvent with less polarity, where hydrophobic interactions stabilizing the native structure are weakened and simultaneously the local hydrogen bonds are strengthened, resulting in stabilization of the secondary structures. The hydrophobic cores in the alpha- and beta-domains also play an important role in preventing this protein from thermal unfolding. As supercritical CO(2) has been attractive for biomedical applications because of the advantages of mild critical condition, nonflammability, nontoxity, and the purity of the resulting products, the structural stabilizing effect found in this study strongly suggests that it is possible to increase the thermostability of hen egg white lysozyme by pretreatment with supercritical CO(2), leading to better industrial applications of this protein.  相似文献   

19.
Fed-batch is the dominating mode of operation in high-cell-density cultures of Saccharomyces cerevisae in processes such as the production of baker's yeast and recombinant proteins, where the high oxygen demand of these cultures makes its supply an important and difficult task. The aim of this work was to study the use of hyperbaric air for oxygen mass transfer improvement on S. cerevisiae fed-batch cultivation. The effects of increased air pressure up to 1.5 MPa on cell behavior were investigated. The effects of oxygen and carbon dioxide were dissociated from the effects of total pressure by the use of pure oxygen and gas mixtures enriched with CO(2). Fed-batch experiments were performed in a stirred tank reactor with a 600 mL stainless steel vessel. An exponential feeding profile at dilution rates up to 0.1 h(-)(1) was used in order to ensure a subcritical flux of substrate and, consequently, to prevent ethanol formation due to glucose excess. The ethanol production observed at atmospheric pressure was reduced by the bioreactor pressurization up to 1.0 MPa. The maximum biomass yield, 0.5 g g(-)(1) (cell mass produced per mass of glucose consumed) was attained whenever pressure was increased gradually through time. This demonstrates the adaptive behavior of the cells to the hyperbaric conditions. This work proved that hyperbaric air up to 1.0 MPa (0.2 MPa of oxygen partial pressure) could be applied to S. cerevisiae cultivation under low glucose flux. Above that critical oxygen partial pressure value, i.e., for oxygen pressures of 0.32 and 0.5 MPa, a drastic cell growth inhibition and viability loss were observed. The increase of carbon dioxide partial pressure in the gas mixture up to 48 kPa slightly decreased the overall cell mass yield but had negligible effects on cell viability.  相似文献   

20.
A preliminary experimental investigation of dry reforming of methane with carbon dioxide, that has been performed on an iron bed activated with an electric current is reported. Operating conditions for the reaction included temperature ranging from 700 to 800° C and pressure close to 1 atm. The reaction, involving an excess of pure methane and carbon dioxide, was performed with and without addition of water vapour, provided by hot water saturation of the gaseous feed. According to syngas compositions, the electron flow has a dramatic effect on the conversion of both methane and carbon dioxide. It was shown also that hot water saturation of the CO(2) and CH(4) mixture allowed very good conversion, giving a syngas with a composition very close to what was expected from equilibrium calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号