首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
(+)-1-[(1R, 3S, 4R)-3-hydroxy-4-hydroxymethylcyclopentyl]-5-[(E)-2- bromovinyl]-1H,3H-pyrimidin-2,4-dione 10 was synthesized starting from (+)-endo-5-norbornen-2-yl acetate. This chiral educt was obtained by enzymatic hydrolysis of racemic esters of endo-5-norbornen-2-ol.  相似文献   

2.
A new bacterial strain, E105, has been introduced as a biocatalyst for the enantioselective hydrolysis of ethyl (R,S)-2-(2-oxopyrrolidin-1-yl) butyrate, (R,S)-1, to (S)-2-(2-oxopyrrolidin-1-yl) butyric acid, (S)-2. This strain was isolated from 60 soil samples using (R,S)-1 as the sole carbon source. The isolate was identified as Tsukamurella tyrosinosolvens E105, based on its morphological characteristics, physiological tests, and 16S rDNA sequence analysis. The process of cell growth and hydrolase production for this strain was then investigated. The hydrolase activity reached its maximum after cultivation at 200?rpm and 30?°C for 36?h. Furthermore, the performance of the enantioselective hydrolysis of (R,S)-1 was studied. The optimal reaction temperature, initial pH, substrate concentration, and concentration of suspended cells were 30?°C, 6.8, 10 and 30?g/l (DCW), respectively. Under these conditions, a high conversion (>45?%) of the product (S)-2 with an excellent enantiomeric excess (ee) (>99?%), and a satisfied enantiomeric ratio (E) (>600) as well were obtained. This study showed that the bacterial isolate T. tyrosinosolvens E105 displayed a high enantioselectivity towards the hydrolysis of racemic ethyl 2-(2-oxopyrrolidin-1-yl) butyrate.  相似文献   

3.
从土壤中分离的1株产碱杆菌Alcaligenes sp.ECU0401具有扁桃酸脱氢酶活性,可以以扁桃酸、苯甲酰甲酸或苯甲酸为唯一C源生长,并且具有较高的脱氢酶活力。以外消旋扁桃酸为C源,采用分批补料策略培养(或反应)99h,扁桃酸累计投入量为30.4g/L,(S)-(+)-扁桃酸被完全降解,(R)-(-)-扁桃酸回收产率为32.8%,对映体过量值(e.e.)〉99.9%。利用静息细胞作为催化剂不对称降解外消旋扁桃酸的氯代衍生物,制备获得光学活性的(R)-(-)-邻氯扁桃酸、(S)-(+)-间氯扁桃酸和(S)-(+)-对氯扁桃酸,光学纯度均超过99.9%e.e.。  相似文献   

4.
The stereoselective hydrolysis of racemic ethyl 4-chloro-3-hydroxybutyrate (ECHB) was performed by using Novozym 435 lipase in an aqueous phase. It was found that racemic ECHB was hydrolysed to (R)-ECHB and (S)-3-hydroxy-gamma-butyrolactone (HGBL) via (S)-4-chloro-3-hydroxybutyric acid. From this result, (R)-ECHB (99%ee) was produced in a good yield on a preparative scale.  相似文献   

5.
Cultured plant cells of Marchantia polymorpha were examined for their ability to reduce beta-keto ester, 2-methyl-3-oxobutanoate. The cells reduced ethyl 2-methyl-3-oxobutanoate to predominantly yield the anti-product, ethyl (2S,3S)-3-hydroxy-2-methylbutanoate, with 92% diastereomeric excess and over 99% enantiomeric excess. The use of immobilized cells of M. polymorpha in calcium alginate gel improved the diastereomeric excess of the product (97% de). In addition, the large-scale reduction of 75 g of ethyl 2-methyl-3-oxobutanoate with immobilized M. polymorpha gave the product with 97% de and >99% ee in 92% yield.  相似文献   

6.
The (18)F-labeled beta2-adrenergic receptor ligand (R,R)(S,S) 5-(2-(2-[4-(2-[(18)F]fluoroethoxy)phenyl]-1-methylethylamino)-1-hydroxyethyl)-benzene-1,3-diol, a derivative of the original highly selective racemic fenoterol, was synthesized in an overall radiochemical yield of 20% after 65 min with a radiochemical purity higher than 98%. The specific activity was in the range of 50-60 GBq/micromol. In vitro testing of the non-radioactive fluorinated fenoterol derivative with isolated guinea pig trachea was conducted to obtain an IC(50) value of 60 nM. Preliminary ex vivo organ distribution and in vivo experiments with positron emission tomography (PET) on guinea pigs were performed to study the biodistribution as well as the displacement of the radiotracer to prove specific binding to the beta2-receptor.  相似文献   

7.
(R)-3-Amino-3-phenylpropionic acid ((R)-beta-Phe) and (S)-3-amino-3-phenylpropionic acid ((S)-beta-Phe) are key compounds on account of their use as intermediates in synthesizing pharmaceuticals. Enantiomerically pure non-natural amino acids are generally prepared by enzymatic resolution of the racemic N-acetyl form, but despite the intense efforts this method could not be used for preparing enantiomerically pure beta-Phe, because the effective enzyme had not been found. Therefore, screening for microorganisms capable of amidohydrolyzing (R,S)-N-acetyl-3-amino-3-phenylpropionic acid ((R,S)-N-Ac-beta-Phe) in an enantiomer-specific manner was performed. A microorganism having (R)-enantiomer-specific amidohydrolyzing activity and another having both (R)-enantiomer- and (S)-enantiomer-specific amidohydrolyzing activities were obtained from soil samples. Using 16S rDNA analysis, the former organism was identified as Variovorax sp., and the latter as Burkholderia sp. Using these organisms, enantiomerically pure (R)-beta-Phe (>99.5% ee) and (S)-beta-Phe (>99.5% ee) with a high molar conversion yield (67%-96%) were obtained from the racemic substrate.  相似文献   

8.
An enantioselective mandelate-degrading bacterium, Alcaligenes sp. ECU0401, was newly isolated from soil. By fed-batch culture, (R)-(-)-mandelic acid was successfully prepared in a 5-L fermenter with 32.8% isolated yield and >99.9% enantiomeric excesses (e.e.) from totally 3.04% (w/v) of racemic mandelic acid after 99 h of biotransformation. The optimal reaction pH and temperature were 6.5 and 30 degrees C, respectively. Using the resting cell as a biocatalyst for asymmetric degradation of racemic mandelic acid and chloro-substituted derivatives thereof, (R)-(-)-mandelic acid, (R)-(-)-o-chloromandelic acid, (S)-(+)-m-chloromandelic acid and (S)-(+)-p-chloromandelic acid were recovered with high analytic yields and excellent enantiomeric excesses (e.e. > 99.9%). (R)-(-)-Mandelic acid could also be obtained after 12 h of biotransformation with 41.5% isolated yield and >99.9% e.e.  相似文献   

9.
One novel protease sin3406-1 was identified from Streptomyces niveus SCSIO 3406, which was isolated from the deep sea of the South China Sea, and heterologously expressed in E. coli BL21(DE3). Protease sin3406-1 was further used as a green biocatalyst in the kinetic resolution of racemic ethyl-3-hydroxybutyrate. After careful process optimization, chiral product ethyl (S)-3-hydroxybutyrate was generated with an enantiomeric excess of over 99% and a conversion rate of up to 50% through direct hydrolysis of inexpensive racemic ethyl-3-hydroxybutyrate catalyzed by sin3406-1. Interestingly, protease sin3406-1 exhibited the same enantio-preference as that of esterase PHE21 during the asymmetric hydrolysis of the ester bonds of racemic ethyl-3-hydroxybutyrate. Through mutation studies and molecular docking, we also demonstrated that the four residues close to the catalytic center, S85, A86, Q87 and Y254, played key roles in both the hydrolytic activity and the enantioselectivity of protease sin3406-1, possibly through forming hydrogen bonds between the enzyme and the substrates. Deep-sea microbial proteases represented by sin3406-1 are new contributions to the biocatalyst library for the preparation of valuable chiral drug intermediates and chemicals through enzymatic kinetic resolution.  相似文献   

10.
Kijima T  Sato N  Izumi T 《Biotechnology letters》2004,26(19):1505-1509
For the purpose of developing a new chiral crown ether unit as a chiral synthon, three racemic mono azabenzo-15-crown-5-ethers, i.e. (R,S)-1-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-yl)-propan-2-ol, (R,S)-2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-yl)-1-phenyl-ethanol and (R , S)-1-[2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-ylmethyl)-phenyl]-ethanol were esterified with vinyl acetate using a lipase from Candida antarctica. The enzymatic acylation of alcohols produced monoacylated products. Two optically active azacrown ethers, (R)-propionic acid 1-methyl-2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-yl)-ethyl ester and (R)-acetic acid 1-[2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-ylmethyl)-phenyl]-ethyl ester were obtained within 48% and 36% yields, respectively and, at an enantiometric excess of over 99% in each case.  相似文献   

11.
Syntheses of trans-(1R,2R) and cis-(1S,2R)-1-amino-2-indanol (AI) were accomplished by a series of enantioselective enzymatic reactions using lipase and transaminase (TA). Lipase catalysed enantioselective hydrolysis of 2-acetoxyindanone was employed to prepare (R)-2-hydroxy indanone (HI). trans-AI (5 mM) (de > 98%) was produced from 20 mM (R)-2- HI using omega-TA and 50 mM (S)-1-aminoindan as an amino donor in water-saturated ethyl acetate. For the production of cis-AI, the diastereomeric (2R)-AI was synthesized from (R)-2-HI using reductive amination, and the kinetic resolution was performed with omega-TA. The enantioselectivity of omega-TA for (2R)-AI was increased to 22.1 in the presence of 5% gamma-cyclodextrin. cis-AI (15.4 mM) (96% de) was obtained from 40 mM (2R)-AI using 30 mM pyruvate and omega-TA (25 mg) in 10 mL of 100 mM phosphate buffer (pH 7.0).  相似文献   

12.
Soluble epoxide hydrolase (EH) from the potato Solanum tuberosum and an evolved EH of the bacterium Agrobacterium radiobacter AD1, EchA-I219F, were purified for the enantioconvergent hydrolysis of racemic styrene oxide into the single product (R)-1-phenyl-1,2-ethanediol, which is an important intermediate for pharmaceuticals. EchA-I219F has enhanced enantioselectivity (enantiomeric ratio of 91 based on products) for converting (R)-styrene oxide to (R)-1-phenyl-1,2-ethanediol (2.0 +/- 0.2 micromol/min/mg), and the potato EH converts (S)-styrene oxide primarily to the same enantiomer, (R)-1-phenyl-1,2-ethanediol (22 +/- 1 micromol/min/mg), with an enantiomeric ratio of 40 +/- 17 (based on substrates). By mixing these two purified enzymes, inexpensive racemic styrene oxide (5 mM) was converted at 100% yield to 98% enantiomeric excess (R)-1-phenyl-1,2-ethanediol at 4.7 +/- 0.7 micromol/min/mg. Hence, at least 99% of substrate is converted into a single stereospecific product at a rapid rate.  相似文献   

13.
(S)-1-(2-Naphthyl)ethanol was yielded by immobilized pea (Pisum sativum L.) protein (IPP) from (R, S) 2-naphthyl ethanol (> 99% ee, yield; about 50%), in which the (R)-enantiomer was selectively oxidized to 2-acetonaphthone. IPP could be reused consecutively at least three times without any decrease of yield and optical purity.  相似文献   

14.
Both enantiomers of (3S)-(-)- and (3R)-(+)-Neodictyoprolenol [(3S,5Z,8Z)-(-)-1,5,8-undecatrien-3-ol] were successfully converted to the algal sex pheromone, (1S,2R)-(-)-dictyopterene B and (1R,2S)-(+)-dictyopterene B in high enantiomeric purities (e. e. > 99%), respectively, by the biomimetic reaction involving phosphorylation and elimination under a mild condition.  相似文献   

15.
The ability to produce (R)- or (S)-β-phenylalanine ethyl ester (3-amino-3-phenylpropionic acid ethyl ester, BPAE) from racemic BPAE through stereoselective hydrolysis was screened for in BPAE-assimilating microorganisms. Sphingobacterium sp. 238C5 and Arthrobacter sp. 219D2 were found to be potential catalysts for (R)- and (S)-BPAE production, respectively. On a 24-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Sphingobacterium sp. 238C5 as the catalyst, 1.15% (w/v) (R)-BPAE (60 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 46%. On a 48-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Arthrobacter sp. 219D2 as the catalyst, 0.87% (w/v) (S)-BPAE (45 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 35%. The enzyme stereoselectively hydrolyzing (S)-BPAE was purified to homogeneity from the cell-free extract of Sphingobacterium sp. 238C5. The enzyme was a monomeric protein with a molecular mass of about 42,000. The enzyme catalyzed hydrolysis of β-phenylalanine esters, while the common aliphatic and aromatic carboxylate esters were not catalyzed.  相似文献   

16.
For the simultaneous synthesis of enatiomerically pure (S)-amino acids and (R)-amines from corresponding alpha-keto acids and racemic amines, an alpha/omega-transaminase coupled reaction system was designed using favorable reaction equilibrium shift led by omega-transaminase reaction. Cloned tyrB, aspC and avtA, and omegataA were co-expressed in E. coli BL21(DE3) using pET23b(+) and pET24ma, respectively. The coupled reaction produced the (S)-amino acids with 73-90% (> 99% ee(S)) of conversion yield and resolved the racemic amines with 83-99% ee(R) for 5 to 10 hours. In designing the coupled reactions in the cell, alanine and pyruvate were efficiently used in the cell as an amine donor for the alanine transaminase and an amino acceptor for the omega-transaminase, respectively, resulting in an alanine-pyruvate shuttling system. The common problem of the low equilibrium constant of the alpha-transaminase can be efficiently overcome by the coupling with the omega-transaminase. However, overcoming the product inhibition of omega-transaminase by the ketone by-product and increasing the decarboxylation rate of the oxaloacetate produced during the transaminase reaction become barriers to further improving the overall reaction rate and the yield of the coupled reactions.  相似文献   

17.
利用来源南海深海的微生物酯酶EST12-7不对称水解反应拆分制备(R)-2-氯丙酸乙酯。并探寻了温度、pH、底物浓度、有机溶剂和反应时间等因素对酯酶EST12-7催化制备(R)-2-氯丙酸乙酯的影响。结果表明,深海微生物酯酶EST12-7催化制备(R)-2-氯丙酸乙酯的最佳反应条件为:13.8 μg/ml酯酶EST12-7,50 mmol/L(±)-2-氯丙酸乙酯,2%正癸醇,pH8.5,30℃,0.05mol/L Tris-HCl,反应60 min。在最佳反应条件下,(±)-2-氯丙酸乙酯的转化率可达49%,所制备的(R)-2-氯丙酸乙酯的光学纯度为98%。通过对酯酶EST12-7拆分制备(R)-2-氯丙酸甲酯和(R)-2-氯丙酸乙酯进行比较,2-氯丙酸酯中的链长对酯酶EST12-7拆分反应有极大的影响。  相似文献   

18.
An efficient two-step enzymatic process for production of (R)- and (S)-ethyl-3-hydroxybutyrate (HEB), two important chiral intermediates for the pharmaceutical market, was developed and scaled-up to a multikilogram scale. Both enantiomers were obtained at 99% chemical purity and over 96% enantiomeric excess, with a total process yield of 73%. The first reaction involved a solvent-free acetylation of racemic HEB with vinylacetate for the production of (S)-HEB. In the second reaction, (R)-enriched ethyl-3-acetoxybutyrate (AEB) was subjected to alcoholysis with ethanol to derive optically pure (R)-HEB. Immobilized Candida antarctica lipase B (CALB) was employed in both stages, with high productivity and selectivity. The type of butyric acid ester influenced the enantioselectivity of the enzyme. Thus, extending the ester alkyl chain from ethyl to octyl resulted in a decrease in enantiomeric excess, whereas using bulky groups such as benzyl or t-butyl, improved the enantioselectivity of the enzyme. A stirred reactor was found unsuitable for large-scale production due to attrition of the enzyme particles and, therefore, a batchwise loop reactor system was used for bench-scale production. The immobilized enzyme was confined to a column and the reactants were circulated through the enzyme bed until the targeted conversion was reached. The desired products were separated from the reaction mixture in each of the two stages by fractional distillation. The main features of the process are the exclusion of solvent (thus ensuring high process throughput), and the use of the same enzyme for both the acetylation and the alcoholysis steps. Kilogram quantities of (S)-HEB and (R)-HEB were effectively prepared using this unit, which can be easily scaled-up to produce industrial quantities.  相似文献   

19.
Efficient enzyme catalyzed kinetic resolutions of a synthetically useful chiral building block, (Z)-4-triphenylmethoxy-2,3-epoxybutan-1-ol, are reported. The highest selectivities were achieved by Lipozyme TL IM and Amano Lipase PS enzymes in the presence of vinyl acetate. Enantiomeric enrichment of the optically active acetate isomer was accomplished by selective crystallization of the racemic part of the enantiomeric mixture. Enzyme catalyzed hydrolysis of the acetate also provided an optically pure epoxybutanol derivative. O-Benzylation of (+)-(Z)-1-hydroxy-4-triphenylmethoxy-2,3-epoxybutane followed by super base promoted diastereo- and enantio-selective rearrangement resulted in (+)-(2R,3R,1'R)-3-[1-hydroxy-2-(triphenylmethoxy)ethyl]-2-phenyloxetane in >98% ee and de. Configurations of the new optically active products were determined by chemical correlation.  相似文献   

20.
The synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate ((R)-ECHB) from ethyl 4-chloroacetoacetate was studied using whole recombinant cells of Escherichia coli expressing a secondary alcohol dehydrogenase of Candida parapsilosis. Using 2-propanol as an energy source to regenerate NADH, the yield of (R)-ECHB reached 36.6 g/l (more than 99% ee, 95.2% conversion yield) without addition of NADH to the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号