首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine, psychrotolerant, rod-shaped and Gram-negative bacterium 22b (the best of 41 beta-galactosidase producers out of 107 Antarctic strains subjected to screening), classified as Pseudoalteromonas sp. based on 16S rRNA gene sequence, isolated from the alimentary tract of Antarctic krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase, which efficiently hydrolyzes lactose at 0-20 degrees C, as indicated by its specific activity of 21-67 U mg(-1) of protein (11-35% of maximum activity) in this temperature range, as well as k(cat) of 157 s(-1), and k(cat)/K(m) of 47.5 mM(-1) s(-1) at 20 degrees C. The maximum enzyme synthesis (lactose as a sufficient inducer) was observed at 6 degrees C, thus below the optimum growth temperature of the bacterium (15 degrees C). The enzyme extracted from cells was purified to homogeneity (25% recovery) by using the fast, three-step procedure, including affinity chromatography on PABTG-Sepharose. The enzyme is a tetramer composed of roughly 115 kDa subunits. It is maximally active at 40 degrees C (190 U mg(-1) of protein) and pH 6.0-8.0. PNPG is its preferred substrate (50% higher activity than against ONPG). The Pseudoalteromonas sp. 22b beta-galactosidase is activated by thiol compounds (70% rise in activity in the presence of 10 mM dithiotreitol), some metal ions (K(+), Na(+), Mn(2+)-40% increase, Mg(2+)-15% enhancement), and markedly inactivated by pCMB and heavy metal ions, particularly Cu(2+). Noteworthy, Ca(2+) ions do not affect the enzyme activity, and the homogeneous protein is stable at 4 degrees C for at least 30 days without any stabilizers.  相似文献   

2.
The gram-negative antarctic bacterium Pseudoalteromonas sp. 22b, isolated from the alimentary tract of krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase. The gene encoding this beta-galactosidase has been PCR amplified, cloned, expressed in Escherichia coli, purified, and characterized. The enzyme is active as a homotetrameric protein, and each monomer consists of 1028 amino acid residues. The enzyme was purified to homogeneity (50% recovery of activity) by using the fast, two-step procedure, including affinity chromatography on PABTG-Sepharose. Enzymatic properties of the recombinant protein are identical to those of native Pseudoalteromonas sp. 22b beta-galactosidase. The enzyme is cold-adapted and at 10 degrees C retains 20% of maximum activity. The purified enzyme displayed maximum activity close to 40 degrees C and at pH of 6.0-8.0. PNPG was its preferred substrate (58% higher activity than against ONPG). The enzyme was particularly thermolabile, losing all activities within 10 min at 50 degrees C. The hydrolysis of lactose in a milk assay revealed that 90% of milk lactose was hydrolyzed during 6 h at 30 degrees C and during 28 h at 15 degrees C. Because of its attributes, the recombinant Pseudoalteromonas sp. 22b beta-galactosidase could be applied at refrigeration temperatures for production of lactose-reduced dairy products.  相似文献   

3.
A beta-galactosidase isoenzyme, beta-Gall, from Bifidobacterium infantis HL96, was expressed in Escherichia coli and purified to homogeneity. The molecular mass of the beta-Gall subunit was estimated to be 115 kDa by SDS-PAGE. The enzyme appeared to be a tetramer, with a molecular weight of about 470 kDa by native PAGE. The optimum temperature and pH for o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose were 60 degrees C, pH 7.5, and 50 degrees C, pH 7.5, respectively. The enzyme was stable over a pH range of 5.0-8.5, and remained active for more than 80 min at pH 7.0, 50 degrees C. The enzyme activity was significantly increased by reducing agents. Maximum activity required the presence of both Na+ and K+, at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, divalent metal cations, and Cr3+, and to a lesser extent by EDTA and urea. The hydrolytic activity using lactose as a substrate was significantly inhibited by galactose. The Km, and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. beta-Gall possesses strong transgalactosylation activity. The production rate of galactooligosaccharides from 20% lactose at 30 and 60 degrees C was 120 mg/ml, and this rate increased to 190 mg/ml when 30% lactose was used.  相似文献   

4.
A sensitive method has been developed for the detection of E. coli beta-galactosidase in transfected HeLa cells. The chromogenic substrate, CPRG (chlorophenol red-beta-D-galactopyranoside), was compared with ONPG (o-nitrophenyl-beta-D-galactopyranoside) by kinetic analysis with purified beta-galactosidase. The Km for CPRG was 1.35 mM and the Vmax was 21.4, whereas the Km for ONPG was 2.42 and the Vmax was 41.1. CPRG at 8.0 mM (6-fold Km) gave 86% of the Vmax and was used as the standard concentration for quantitation of enzyme levels. The Vmax for CPRG was half that for ONPG, and chlorophenol red has an extinction coefficient that is 21-fold higher than o-nitrophenol; these factors make CPRG about 10-fold greater in sensitivity for the quantitation of enzyme levels. The use of Nonidet P-40 to lyse the cells and the use of CPRG as substrate permitted the rapid detection of low levels of enzyme production from transfected human cells that could not be detected using ONPG.  相似文献   

5.
We are investigating glycosyl hydrolases from new psychrophilic isolates to examine the adaptations of enzymes to low temperatures. A beta-galactosidase from isolate BA, which we have classified as a strain of the lactic acid bacterium Carnobacterium piscicola, was capable of hydrolyzing the chromogen 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside (X-Gal) at 4 degrees C and possessed higher activity in crude cell lysates at 25 than at 37 degrees C. Sequence analysis of a cloned DNA fragment encoding this activity revealed a gene cluster containing three glycosyl hydrolases with homology to an alpha-galactosidase and two beta-galactosidases. The larger of the two beta-galactosidase genes, bgaB, encoded the 76.8-kDa cold-active enzyme. This gene was homologous to family 42 glycosyl hydrolases, a group which contains several thermophilic enzymes but none from lactic acid bacteria. The bgaB gene from isolate BA was subcloned in Escherichia coli, and its enzyme, BgaB, was purified. The purified enzyme was highly unstable and required 10% glycerol to maintain activity. Its optimal temperature for activity was 30 degrees C, and it was inactivated at 40 degrees C in 10 min. The K(m) of freshly purified enzyme at 30 degrees C was 1.7 mM, and the V(max) was 450 micromol. min(-1). mg(-1) with o-nitrophenyl beta-D-galactopyranoside. This cold-active enzyme is interesting because it is homologous to a thermophilic enzyme from Bacillus stearothermophilus, and comparisons could provide information about structural features important for activity at low temperatures.  相似文献   

6.
Cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2 was overexpressed in Escherichia coli using the Cold expression system and the recombinant enzyme, rBglAp, was characterized. The purified rBglAp exhibited similar enzymatic properties to the native enzyme, e.g., (i) it had high activity at 0 degrees C, (ii) its optimum temperature and pH were 10 degrees C and 8.0, respectively, and (iii) it was possible to rapidly inactivate the rBglAp at 50 degrees C in 5 min. Moreover, rBglAp was able to hydrolyze both ONPG and lactose with K(m) values of 2.7 and 42.1mM, respectively, at 10 degrees C. One U of rBglAp could hydrolyze about 70% of the lactose in 1 ml of milk in 24h, and the enzyme produced trisaccharide from lactose. We conclude that rBglAp is a cold-active enzyme that is extremely heat labile and has significant potential application to the food industry.  相似文献   

7.
An extracellular beta-glucosidase was purified from culture filtrates of the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm grown on 1.0% (w/v) carboxymethyl-cellulose using ammonium sulfate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography. The enzyme is monomeric with a molecular weight of 64.2 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and has a pI of 8.55. The enzyme catalyzes the hydrolysis of p-nitrophenyl-beta-D-glucopyranoside (PNPG) as the substrate, with a K(m) of 1.52 mM, and V(max) of 3.21 U min mg(-1) protein. Glucose competitively inhibited beta-glucosidase with a K(i) value of 0.79 mM. Optimal activity with PNPG as the substrate was at pH 5.0 and 50 degrees C. The enzyme was stable at pH 5.0 at temperatures up to 50 degrees C. The purified beta-glucosidase was active against PNPG, cellobiose, sophorose, laminaribiose and gentiobiose, but did not hydrolyze lactose, sucrose, Avicel or o-nitrophenyl-beta-d-galactopyranoside. The activity of beta-glucosidase was stimulated by Ca(2+), Co(2+), Mg(2+), Mn(2+), glycerol, dimethyl sulfoxide (DMSO), dithiothreitol and EDTA, and strongly inhibited by Hg(2+). The internal amino acid sequences of D. eschscholziibeta-glucosidase have similarity to the sequences of the family 3 beta-glucosyl hydrolase.  相似文献   

8.
Glutamate dehydrogenase from Pyrococcus horikoshii (Pho-GDH) was cloned and overexpressed in Escherichia coli. The cloned enzyme with His-tag was purified to homogeneity by affinity chromatography and shown to be a hexamer enzyme of 290+/-8 kDa (subunit mass 48 kDa). Its optimal pH and temperature were 7.6 and 90 degrees C, respectively. The purified enzyme has outstanding thermostability (the half-life for thermal inactivation at 100 degrees C was 4 h). The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate and requires NAD(P)H and NADP as cofactors but it does not reveal activity on NAD as cofactor. K(m) values of the recombinant enzyme are comparable for both substrates: 0.2 mM for L-glutamate and 0.53 mM for 2-oxoglutarate. The enzyme was activated by heating at 80 degrees C for 1 h, which was accompanied by the formation of its active conformation. Circular dichroism and fluorescence spectra show that the active conformation is heat-inducible and time-dependent.  相似文献   

9.
The phosphoglucomutase gene from a wild type Fusarium oxysporum strain (F3), was homologously expressed, under the control of the constitutive promoter of gpdA of Aspergillus nidulans. The transformant produced elevated levels of phosphoglucomutase activity compared to the wild type, a fact that facilitated the subsequent purification procedure. The enzyme (FoPGM) was purified to homogeneity applying three anion exchange and one gel filtration chromatography steps. The native enzyme revealed a monomeric structure with a molecular mass of 60 kDa, while the isoelectric point was 3.5. FoPGM was active in pH ranged from 6.0 to 8.0, with an optimum using 3-(N-morpholino)propanesulfonic acid buffer at 7.0, while loss of activity was observed when phosphate buffer was used in the above mentioned pH range. The optimal temperature for activity was 45°C but the enzyme became unstable at temperatures above 40°C. FoPGM requires the presence of a divalent cation for its function with maximum activity being obtained with Co(2+). The apparent K(m) for Co(2+) was found to be 10 μM. The enzyme was also active with other divalent metal ions such as Mn(2+), Mg(2+), Ni(2+) and Ca(2+) but to a lesser extent. The following kinetic constants were determined: v(max), 0.74 μmol mg(protein)(-1)min(-1); k(cat), 44.2 min(-1); K(m)(G1P), 0.10mM; K(m)(G1,6 diP), 1.03 μM; k(cat)/K(m)(G1P), 443 mM(-1)min(-1) and k(cat)/K(m)(G1,6 diP), 42,860 mM(-1)min(-1). The enzyme was considered to follow a Ping Pong substituted enzyme or enzyme isomerization mechanism.  相似文献   

10.
A simple procedure has been devised to isolate beta-galactosidase from jack bean meal. The final preparation gives one major protein banc in disc gel electrophoresis. The substrate specificity of this enzyme toward some natural oligosaccharides, glycoproteins, and sphingoglycolipids has been examined in detail. Among three isomers of N-acetyllactosamine, Galbeta1leads to4GlcNAc; while Galbeta1leads to3GlcNAc was hydrolyzed very slowly. This property can be used to distinguish the galactose linkage in asialo-GM1 (Galbeta1leads to3GalNAcbeta1leads to4Galbeta1leads to4Glcleads toCer) and that in lacto-N-neotetraosylceramide (Galbeta1leads to4GlcNAcbeta1leads to 3Galbeta1leads to4Glcleads toCer). For hydrolyzing glycolipids, the effect of sodium taurodeoxycholate and sodium taurochenodeoxycholate on the rate of hydrolysis was carefully examined. This enzyme hydrolyzes lactosylceramide and asialo-GM1 faster than GM1. These results suggest that in addition to the type and linkage of the penultimate sugar unit, the sugar unit at the distal position of the saccharide chain also affects the hydrolysis rate. It also readily liberates 80% D-galactosyl units from asialo alpha1-acid glycoprotein. Escherichia coli beta-galactosidase on the other hand cannot hydrolyze asialo-alpha1-acid glycoprotein, lactosylceramide, GM1, asialo-GM1, and lacto-N-neotetraosylceramide. The molecular weight of this enzyme is about 75,000 and the isoelectric point is pH 8.0. With p-nitrophenyl beta-D-galactopyranoside as substrate, optimal activity occurs at pH 2.8 with glycine-HCl buffer and at pH 3.5 with citrate-phosphate buffer. With lactose as substrate, the pH optimum in these two buffers are 2.8 and 4.0, respectively. Km values for p-nitrophenyl beta-D-galactopyranoside, o-nitrophenyl beta-D-galactopyranoside and lactose are 0.51 mM, 0.63 mM, and 12.23 mM, respectively. Many inhibitors for this enzyme including inorganic ions, monosaccharides, and glycosides are investigated. In contrast to E. coli beta-galactosidase, jack bean beta-galactosidase is not inhibited by p-aminophenyl thio-beta-D-galactopyranoside.  相似文献   

11.
Four open reading frames encoding putative nitrilases were identified in the genomes of the hyperthermophilic archaea Pyrococcus abyssi, Pyrococcus horikoshii, Pyrococcus furiosus, and Aeropyrum pernix (growth temperature 90-100 degrees C). The nitrilase encoding genes were cloned and overexpressed in Escherichia coli. Enzymatic activity could only be detected in the case of Py. abyssi. This recombinant nitrilase was purified by heat treatment of E. coli crude extract followed by anion-exchange chromatography with a yield of 88% and a specific activity of 0.14 U/mg. The recombinant enzyme, which represents the first archaeal nitrilase, is a dimer (29.8 kDa/subunit) with an isoelectric point of pI 5.3. The nitrilase is active at a broad temperature (60-90 degrees C) and neutral pH range (pH 6.0-8.0). The recombinant enzyme is highly thermostable with a half-life of 25 h at 70 degrees C, 9 h at 80 degrees C, and 6 h at 90 degrees C. Thermostability measurements by employing circular dichroism spectroscopy and differential scanning microcalorimetry, at neutral pH, have shown that the enzyme unfolds up to 90 degrees C reversibly and has a T(m) of 112.7 degrees C. An inhibition of the enzymatic activity was observed in the presence of acetone and metal ions such as Ag(2+) and Hg(2+). The nitrilase hydrolyzes preferentially aliphatic substrates and the best substrate is malononitrile with a K(m) value of 3.47 mM.  相似文献   

12.
A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ~2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process.  相似文献   

13.
Yi SH  Alli I  Park KH  Lee B 《New biotechnology》2011,28(6):806-813
After the complete gene of a β-galactosidase from human isolate Bifidobacterium breve B24 was isolated by PCR and overexpressed in E. coli, the recombinant β-galactosidase was purified to homogeneity and characterized for the glycoside transferase (GT) and glycoside hydrolase (GH) activities on lactose. One complete ORF encoding 691 amino acids (2,076 bp) was the structural gene, LacA (galA) of the β-gal gene. The recombinant enzyme shown by activity staining and gel-filtration chromatography was composed of a homodimer of 75 kDa with a total molecular mass of 150 kDa. The K(m) value for lactose (95.58 mM) was 52.5-fold higher than the corresponding K(m) values for the synthetic substrate ONPG (1.82 mM). This enzyme with the optimum of pH 7.0 and 45°C could synthesize approximately 42.00% of GOS from 1M of lactose. About 97.00% of lactose in milk was also quickly hydrolyzed by this enzyme (50 units) at 45°C for 5h to produce 46.30% of glucose, 46.60% of galactose and 7.10% of GOS. The results suggest that this recombinant β-galactosidase derived from a human isolate B. breve B24 may be suitable for both the hydrolysis and synthesis of galacto-oligosaccharides (GOS) in milk and lactose processing.  相似文献   

14.
A thermostable beta-galactosidase (EC 3.2.1.23; beta-dgalactoside galactohydrolase) was found to be inducible in an extreme thermophile resembling Thermus aquaticus. Enzyme induction was achieved by the addition of lactose, galactose, or the alpha-galactoside, melibiose, to growing cultures. The addition of glucose to induced cultures had a repressive effect on further enzyme synthesis. The enzyme was purified 78-fold, and the optimum temperature and pH for activity were determined to be 80 C and pH 5.0, respectively. The enzyme was activated by both manganese and ferrous iron. Sulfhydryl activation and thermal stabilization indicate that the thermophilic beta-galactosidase is a sulfhydryl enzyme. Kinetic determinations at 80 C established a K(m) of 2.0 x 10(-3)m for the chromogenic substrate o-nitrophenyl beta-d-galactopyranoside (ONPG) and a K(1) of 7.5 x 10(-3)m for lactose. The Arrhenius energy of activation (for the hydrolysis of ONPG) was calculated to be 13.7 kcal/mole. A molecular weight of 5.7 x 10(5) daltons was estimated by elution of the enzyme from Sephadex 4B.  相似文献   

15.
The beta-glycosidase gene of Thermus thermophilus KNOUC202 was cloned, expressed in Escherichia coli JM109(DE3), and the enzyme was purified and characterized. The gene (KNOUC202/beta-gly) was composed of 1296 bp encoding a beta-glycosidase (KNOUC202beta-glycosidase) of 431 a.a., belonging to the family 1 of glycosyl hydrolase. The gene was expressed as monomer of 430 a.a. with amino terminal methionine excised in E. coli JM109(DE3). The enzyme hydrolyzed beta-glycosides whose glycone are galactose, glucose and fucose well, however showed no or very low activity on beta-D-glycosides whose glycone are disaccharides and xylose. kcat of the enzyme for the hydrolysis of p-Nph-beta-D-Glcp was lower than those for p-Nph-beta-D-Galp and ONPG, however K(m) for p-Nph-beta-D-Glcp was highly lower than those for p-Nph-beta-D-Galp and ONPG resulting in the catalytic efficiency(k(cat)/K(m)) for the hydrolysis of p-Nph-beta-D-Glcp much higher than those for p-Nph-beta-D-Galp and ONPG. Optimum pH and optimum temperature of the enzyme were pH 5.4 and 90 degrees C. The enzyme has high thermostability, not losing its activity at 80 degrees C for 2 h in 0.05 M Na-phosphate buffer of pH 6.8 with T(m) of 100.0 +/- 0.031 degrees C in 0.02 M Tris-HCl buffer of pH 8.2. The beta-glycosidase produced a disaccharide composed of galactose as transglycosylation byproduct during hydrolysis of lactose.  相似文献   

16.
A genomic DNA fragment, encoding a thermotolerant β-glucosidase, of the obligate anaerobe Thermotoga petrophila RKU-1 was cloned after PCR amplification into Escherichia coli strain BL21 CodonPlus. The purified cloned enzyme was a monomeric, 51.5?kDa protein (by SDS-PAGE) encoded by 1.341?kb gene. The estimated K (m) and V (max) values against p-nitrophenyl-β-D-glucopyranoside were 2.8?mM and 42.7?mmol?min(-1)?mg(-1), respectively. The enzyme was also active against other p-nitrophenyl substrates. Possible catalytic sites involved in hydrolyzing different p-nitrophenyl substrates are proposed based on docking studies of enzyme with its substrates. Because of its unique characters, this enzyme is a potential candidate for industrial applications.  相似文献   

17.
Liu D  Zhu T  Fan L  Quan J  Guo H  Ni J 《Biotechnology letters》2007,29(10):1529-1535
A 1,125-bp long ORF encoding a novel gentisate 1,2-dioxygenase with two-domain bicupins was cloned from Silicibacter pomeroyi DSS-3 and expressed in Escherichia coli. The resulting product was purified to homogeneity and partially characterized. Non-reductive SDS-PAGE and gel filtration showed that the active recombinant gentisate 1,2-dioxygenase had an estimated molecular mass of 132 kDa, and reductive SDS-PAGE indicated an approximate size of 45 kDa. The enzyme thus appears to be a homotrimeric protein. This is in contrast to the homotetrameric or dimeric protein of the gentisate 1,2-dioxygenases that have been characterized thus far. The K (m) and K (cat)/K (m) for gentisate were 12 muM and 653 x 10(4) M(-1 )s(-1); the pI was 4.6-4.8. It was optimally active at 40 degrees C and pH 8.0.  相似文献   

18.
Ribokinase (EC 2.1.7.15) from Leishmania major was cloned, sequenced and overexpressed in Escherichia coli. The gene expressed an active enzyme that had comparable activity to the same enzyme studied in E. coli. It specifically phosphorylated D-ribose. Under defined conditions, the Km for the substrates D-ribose and ATP were 0.3±0.04 mM and 0.2±0.02mM, respectively. The turnover numbers of the enzyme for the substrates were 10.8s~(-1) and 10.2 s~(-1), respectively. The enzyme product ribose 5-phosphate inhibited the phosphorylation of D-ribose with an apparent K_i of 0.4 mM, which is close to the K_m (0.3mM) of Dribose, suggesting that it might play a role in regulating flux through the enzyme.  相似文献   

19.
The gene encoding a carboxylesterase from Anoxybacillus sp., PDF1, was cloned and sequenced. The recombinant protein was expressed in Escherichia coli BL21, under the control of isopropyl-β-D-thiogalactopyranoside-inducible T7 promoter. The enzyme, designated as PDF1Est, was purified by heat shock and ion-exchange column chromatography. The molecular mass of the native protein, as determined by SDS-PAGE, was about 26 kDa. PDF1Est was active under a broad pH range (pH 5.0-10.0) and a broad temperature range (25-90 °C), and it had an optimum pH of 8.0 and an optimum temperature of 60 °C. The enzyme was thermostable carboxylesterase, and did not lose any activity after 30 min of incubation at 60 °C. The enzyme exhibited a high level of activity with p-nitrophenyl butyrate with apparent K(m), V(max), and K(cat) values of 0.348 ± 0.030 mM, 3725.8 U/mg, and 1500 ± 54.50/s, respectively. The effect of some chemicals on the esterase activity indicated that Anoxybacillus sp. PDF1 produce an carboxylesterase having serine residue in active site and -SH groups in specific sites, which are required for its activity.  相似文献   

20.
We found a significant activity of hydroxypyruvate isomerase in Escherichia coli clone cells harboring an E. coli gene (called orf b0508 or gip), which is located downstream of the glyoxylate carboligase gene. We newly designated the gene hyi. The enzyme was purified from cell extracts of the E. coli clone. The enzyme had a molecular mass of 58 kDa and was composed of two identical subunits. The optimum pH for the isomerization of hydroxypyruvate was 6.8-7.2. The enzyme required no cofactor. It exclusively catalyzed the isomerization between hydroxypyruvate and tartronate semialdehyde. The apparent K(m) value for hydroxypyruvate was 12.5 mM. The amino acid sequence of E. coli hydroxypyruvate isomerase is highly similar to those of glyoxylate-induced proteins, Gip, found widely from prokaryotes to eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号