首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotransformation of rifamycin B to rifamycin S using two strains of C. lunata namely NCIM 716 and NMU grown on various solid substrates viz., grass, paper, jowar/wheat straw, bran and bagasse was studied. Almost complete biotransformation efficiency of rifamycin B at 0. 06 mM concentration was observed within 24 hr. Among these two strains, C. lunata NMU showed 90% of biotransformation and higher rate of cellulose utilization on solid substrates vis-à-vis reference strain. Cellulase activity of both strains was also studied for exoglucanase, endoglucanase and beta-glucosidase. Column bioreactor studies with bagasse revealed further improvement in biotransformation efficiency of C. lunata NMU.  相似文献   

2.
Biodegradation of lignocellulosic waste by Aspergillus terreus is reported for the first time. This isolate produced 250 CMCase (carboxymethyl cellulase or endoglucanase) U.ml(-1) and biodegraded hay and straw during 3 days and the biomass production on straw was 5g.L(-1) dry weight from 0.25 cm2 inoculated mycellium. This strain secreted endocellulases and exocellulases in the culture medium, but some of the enzymes produced, remained cell membrane bound. Cell bound enzymes were released by various treatments. The highest amount of endoglucanase and exoglucanase was released when the cells were treated with sonication. Aspergillus terreus was added to two tanks containing sugar wastewater and pulp manufacturing waste, as a seed for COD removal. This fungus reduced the COD by 40-80 percent, also, ammonia was reduced from 14.5 mM to 5.6 mM in sugar beet wastewater. The effects of crude enzyme of this fungus for COD removal was studied.  相似文献   

3.
Biodegradation of lignocellulosic waste by Aspergillus terreus is reported for the first time. This isolate produced 250 CMCase (carboxymethyl cellulase or endoglucanase) U.ml-1 and biodegraded hay and straw during 3 days and the biomass production on straw was 5g.L-1dry weight from 0.25 cm2 inoculated mycellium. This strain secreted endocellulases and exocellulases in the culture medium, but some of the enzymes produced, remained cell membrane bound. Cell bound enzymes were released by various treatments. The highest amount of endoglucanase and exoglucanase was released when the cells were treated with sonication. Aspergillus terreus was added to two tanks containing sugar wastewater and pulp manufacturing waste, as a seed for COD removal. This fungus reduced the COD by 40–80 percent, also, ammonia was reduced from 14.5 mM to 5.6 mM in sugar beet wastewater. The effects of crude enzyme of this fungus for COD removal was studied.  相似文献   

4.
β-Exoglucanase production on the lignocellulosic material, wheat bran, by Aspergillus niger under solid state fermentation (SSF) on a laboratory scale was investigated. Different fermentation parameters, such as moisture content, initial pH, temperature, depth of the substrate, and inoculum size on exoglucanase production were optimized. Moisture content of 40 %, pH of 7.0, substrate depth of 1.0 cm, inoculum size of 2?×?106 spores/g of wheat bran, and temperature at 30 °C were optimal for maximum production of exoglucanase. Maximum yields of exoglucanase with 28.60 FPU/g of wheat bran were obtained within 3 days of incubation under optimal conditions.  相似文献   

5.
Cultivation of specialty mushrooms on lignocellulosic wastes represents one of the most economical organic recycling processes. Compared with other cultivated mushrooms, very little is known about the nature of the lignocellulolytic enzymes produced by the edible and medicinal fungus Grifola frondosa, the parameters affecting their production, and enzyme activity profiles during different stages of the developmental cycle. In this work we investigated the enzymes that enable G. frondosa, to colonize and deconstruct two formulations based on industrial lignocellulosic by-products. G. frondosa degraded both substrates (oak-sawdust plus corn bran, and oak/corn bran supplemented with coffee spent-ground) decreasing 67 and 50% of their lignin content, along with 44 and 37% of the polysaccharides (hemicellulose and cellulose) respectively. 35.3% biological efficiency was obtained when using oak sawdust plus corn bran as substrate. Coffee spent-ground addition inhibited mushroom production, decreased growth, xylanase and cellulase activities. However, taking into account that G. frondosa successfully colonized this residue; this substrate formula might be considered for its growth and medicinal polysaccharide production. Although G. frondosa tested positive for Azure B plate degradation, a qualitative assay for lignin-peroxidase, attempts to detect this activity during solid state fermentation were unsuccessful. Enzyme activities peaked during colonization but declined drastically during fruiting body formation. Highest activities achieved were: endoglucanase 12.3, exoglucanase 16.2, β-glucosidase 2.3, endoxylanase 20.3, amylase 0.26, laccase 14.8 and Mn-peroxidase 7.4 U/g dry substrate.  相似文献   

6.
Saccharum officinarum bagasse (common name: sugarcane bagasse) and Pennisetum purpureum (also known as Napier grass) are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi) cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi) cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi) cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production.  相似文献   

7.
8.
In this study an industrial Saccharomyces cerevisiae yeast strain capable of fermenting ethanol from pretreated lignocellulosic material was engineered. Genes encoding cellulases (endoglucanase, exoglucanase and β-glucosidase) were integrated into the chromosomal ribosomal DNA and delta regions of a derivative of the K1-V1116 wine yeast strain. The engineered cellulolytic yeast produces ethanol in one step through simultaneous saccharification and fermentation of pretreated biomass without the addition of exogenously produced enzymes. When ethanol fermentation was performed with 10% dry weight of pretreated corn stover, the recombinant strain fermented 63% of the cellulose in 96 h and the ethanol titer reached 2.6% v/v. These results demonstrate that cellulolytic S. cerevisiae strains can be used as a platform for developing an economical advanced biofuel process.  相似文献   

9.
Humicola grisea var. thermoidea is a deuteromycete which secretes a large spectrum of hydrolytic enzymes when grown on lignocellulosic residues. This study focused on the heterologous expression and recombinant enzyme analysis of the major secreted cellulase when the fungus is grown on sugarcane bagasse as the sole carbon source. Cellobiohydrolase 1.2 (CBH 1.2) cDNA was cloned in Pichia pastoris under control of the AOX1 promoter. Recombinant protein (rCBH1.2) was efficiently produced and secreted as a functional enzyme, presenting a molecular mass of 47?kDa. Maximum enzyme production was achieved at 96?h, in culture medium supplemented with 1.34?% urea and 1?% yeast extract and upon induction with 1?% methanol. Recombinant enzyme exhibited optimum activity at 60?°C and pH 8, and presented a remarkable thermostability, particularly at alkaline pH. Activity was evaluated on different cellulosic substrates (carboxymethyl cellulose, filter paper, microcrystalline cellulose and 4-para-nitrophenyl ??-d-glucopyranoside). Interestingly, rCBH1.2 presented both exoglucanase and endoglucanase activities and mechanical agitation increased substrate hydrolysis. Results indicate that rCBH1.2 is a potential biocatalyst for applications in the textile industry or detergent formulation.  相似文献   

10.
Lignocellulosic wastes can be potentially converted into several bioproducts such as glucose, xylo-oligosaccharides, and bioethanol. Certain processes, such as enzymatic hydrolysis, are generally needed to convert biomass into bioproducts. The present study investigated the production of xylanases and cellulases by Streptomyces thermocerradoensis I3 under solid-state fermentation (SSF), using wheat bran as a low-cost medium. The activities of xylanase and carboxymethyl cellulase (CMCase) were evaluated until 96 hr of incubation. The highest enzyme activity was observed after 72 hr of incubation. The crude enzyme extract was sequentially filtered, first using a 50 kDa filter, followed by a 30 kDa filter. Fraction 3 (F3) exhibited activities of both xylanase and CMCase. Xylanase and CMCase showed optimum activity at 70°C and pH 6.0 and 55°C and pH 6.0, respectively. The zymogram analysis showed a single activity band with a molecular mass of approximately 17 kDa. These findings provide strong evidence that the enzyme is a bifunctional xylanase/endoglucanase. This enzyme improved the saccharification of sugarcane bagasse by 1.76 times that of commercial cellulase. This enzyme has potential applications in various biotechnological procedures.  相似文献   

11.
The biomass yield, cellulolytic activity, and protein recovery using Aspergillus terreus GN1 with alkali-treated sugarcane bagasse was studied using different levels (250-600 mg of N/L of broth) of organic and inorganic nitrogen sources. e.g., cattle urine, urea, cornsteep liquor, ammonium sulfate, ammonium nitrate, ammonium iron sulfate, ammonium chloride, and sodium nitrate. Among different levels of alkali-treated bagasse substrate concentrations (0.5-4.0% w/v) tested, 1.0% substrate yielded the highest crude protein content, protein recovery, and cellulolytic activity. The biomass recovery with 1.0% substrate ranged from 290-380 mg/500 mg bagasse substrate in a 50-mL broth with a nitrogen level of 250-600 mg of N/L in all the sources except ammonium iron sulfate, which yielded 402-439 mg/500 mg bagasse substrate. However, crude protein content of biomass obtained with an ammonium iron sulfate nitrogen source was the lowest. Cornsteep liquor nitrogen source at the rate of 600 mg of N/L yielded the maximum crude protein of 32.9%, protein recovery of 22.2 g/100 g of bagasse, and carboxymethyl cellulase and filter paper enzyme activities of 1.1 and 0.09 units/mL, among the organic and inorganic nitrogen sources studied. In general, the organic nitrogen sources and inorganic nonammonium nitrogen sources were utilized preferentially for protein production over the inorganic ammonium nitrogen sources. The fermentation time required under optimum cultural and nutritional conditions for A. terreus GN1 was also evaluated. The crude protein content of the biomass increased gradually up to the seventh day of fermentation, but the protein recovery rate was high up to two or three days. It was observed that the cellulose utilization rate increased after an initial lag of one day up to the third day and gradually increased further, which corresponded positively with protein content, biomass protein recovery, and cellulase enzyme activity. On the seventh day of fermentation, the crude protein content, biomass protein recovery, water-soluble carbohydrate, bagasse cellulose utilization, CMCase, and FPase activities were 32.8%, 20.1 g/100 g of bagasse, 6.2%, 82.7%, 1.0. and 0.08 U/mL, respectively. The final biomass recovered contained 32.8% crude protein content and had an in vitro rumen digestibility (IVRD) coefficient of 68.8%. The biomass contained almost all the essential and nonessential amino acids and was comparable with FAO reference protein. It is concluded that a fermentation time of 72 h gave a faster rate of protein production of 16.9 g/100 g of bagasse with 69.8% bagasse cellulose utilization with 76.0% IVRD. and contained almost all the essential and nonessential amino acids.  相似文献   

12.
A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.  相似文献   

13.
Lignin plays an important functional and structural role in plants, but also contributes to the recalcitrance of lignocellulosic biomass to hydrolysis. This study addresses the influence of lignin in hydrolysis of sugarcane bagasse from conventional bred lines (UFV260 and UFV204) that were selected from 432 field-grown clones. In addition to higher sugar production, bagasse clone UFV204 had a small, but statistically significant, lower insoluble lignin content compared with clone UFV260 (15.5% vs, 16.6%) and also exhibited a significantly higher cellulose conversion to glucose (81.3% vs. 63.3%) at a cellulase loading of 5 (filter paper unit) FPU/g of glucan or 3 FPU/g total solids for liquid hot water pretreated bagasse (200°C, 10 min). The enzyme loading was further decreased by 50% to 2.5 FPU/g glucan and resulted in a similar glucan conversion (88.5%) for clone UFV204 when the bagasse was preincubated with bovine serum albumin at pH 4.8 and nonproductive binding of cellulase components was blocked. Comparison of Langmuir adsorption isotherms and differential adsorption of the three major cellulolytic enzyme components endoglucanase, cellobiohydrolase, and β-glucosidase help to explain differences due to lignin content.  相似文献   

14.
Four anaerobic fungi were grown on filter paper cellulose and monitored over a 7–8 days period for substrate utilisation, fermentation products, and secretion of cellulolytic and xylanolytic enzymes. Two of the fungi (N1 and N2) were Neocallimastix species isolated from a ruminant (sheep) and the other two fungi were Piromyces species (E2 and R1) isolated from an Indian Elephant and an Indian Rhinoceros, respectively. The tested anaerobic fungi degraded the filter paper cellulose almost completely and estimated cellulose digestion rates were 0.25, 0.13, 0.21 and 0.18 g · 1-1 · h-1 for strains E2, N1, N2, R1, respectively. All strains secreted cellulolytic and xylanolytic enzymes, including endoglucanase, exoglucanase, -glucosidase and xylanase. Strain E2 secreted the highest levels of enzymes in a relatively short time. The product formation on avicel by enzymes secreted by the four fungi was studied. Both in the presence and absence of glucurono-1,5--lactone, a specific inhibitor of -glucosidase, mainly glucose was formed but no cellobiose. Therefore the exoglucanase secreted by the four fungi is probably a glucohydrolase.  相似文献   

15.
Cost-effective bioethanol production requires a supply of various low-cost enzymes that can hydrolyse lignocellulosic materials consisting of multiple polymers. Because plant-based enzyme expression systems offer low-cost and large-scale production, this study simultaneously expressed β-glucosidase (BglB), xylanase (XylII), exoglucanase (E3), and endoglucanase (Cel5A) in tobacco plants, which were individually fused with chloroplast-targeting transit peptides and linked via the 2A self-cleaving oligopeptideex from foot-and-mouth disease virus (FMDV) as follows: [RsBglB-2A-RaCel5A], [RsXylII-2A-RaCel5A], and [RsE3-2A-RaCel5A]. The enzymes were targeted to chloroplasts in tobacco cells and their activities were confirmed. Similarly to the results of a transient assay using Arabidopsis thaliana protoplasts, when XylII was placed upstream of the 2A sequence, the [RsXylII-2A-RaCel5A] transgenic tobacco plant had a more positive influence on expression of the protein placed downstream. The [RsBglB-2A-RaCel5A] and [RsE3-2A-RaCel5A] transgenic lines displayed higher activities towards carboxylmethylcellulose (CMC) compared to those in the [RsXylII-2A-RaCel5A] transgenic line. This higher activity was attributable to the synergistic effects of the different cellulases used. The [RsBglB-2A-RaCel5A] lines exhibited greater efficiency (35-74% increase) of CMC hydrolysis when the exoglucanase CBHII was added. Among the various exoglucanases, E3 showed higher activity with the crude extract of the [RsBglB-2A-RaCel5A] transgenic line. Transgenic expression of 2A-mediated multiple enzymes induced synergistic effects and led to more efficient hydrolysis of lignocellulosic materials for bioethanol production.  相似文献   

16.
A novel high-throughput screening method is proposed for the directed evolution of exoglucanase facilitated by the co-expression of β-glucosidase, using the glucose released from filter paper as the screening indicator. Three transformants (B1, D6 and G10) with improved activity were selected from 4,000 colonies. The specific activities of B1, D6 and G10 for releasing glucose were, respectively, 1.4-, 1.3- and 1.6-fold higher than that of the wild type. The engineered exoglucanase gene was inserted into an expression vector carrying the previously engineered endoglucanase and β-glucosidase genes, and transformed into Escherichia coli to form a completely engineered cellulase system that showed 8.2-fold increase in glucose production (relative activity) compared to the cells equipped with wild-type enzymes. To our knowledge, this is the first report for directed evolution of an exoglucanase using insoluble cellulose as the screening substrate.  相似文献   

17.
This study was undertaken to explore alternative applications of the widely known entomopathogenic/endophytic fungus, Beauveria bassiana, besides its sole use as a biocontrol agent. B. bassiana SAN01, was investigated for the production of two glycoside hydrolases, xylanase and endoglucanase under submerged conditions. Among the different biomass tested, wheat bran provided the best results for both xylanase and endoglucanase, and their production levels were further enhanced using response surface methodology. Under optimised conditions, heightened yields of 1061 U/ml and 23.03 U/ml were observed for xylanase and endoglucanase, respectively, which were 3.44 and 1.35 folds higher than their initial yields. These are the highest ever production levels reported for xylanase and endoglucanase from any B. bassiana strain or any known entomopathogenic fungi. Furthermore, the efficacy of xylanase/endoglucanase cocktail in the saccharification of sugarcane bagasse was evaluated. The highest amount of reducing sugar released from the pretreated biomass by the action of the crude Beauveria enzyme cocktail was recorded at 30°C after 8 h incubation. The significant activities of the hydrolytic enzymes recorded with B. bassiana in this study thus present promising avenues for the use of the entomopathogen as a new source of industrial enzymes and by extension, other biotechnological applications.  相似文献   

18.
This study describes the isolation and characterization of a novel fungus, Aspergillus flavus BS1 and its cellulolytic activities with special emphasis on endoglucanase production. Preliminary screening studies showed that A. flavus BS1 was a potent strain for the production of cellulase. To study the cellulolytic activities in detail by submerged fermentation (SmF), productions of endoglucanase, exoglucanase, and β-glucosidase were estimated from the basal salt medium (BSM) supplemented with 1 % carboxy methyl cellulose (CMC). CMC medium supported the maximum yield of endoglucanase (2,793 U/ml) on day 5 of incubation at 28 °C and 150 rpm, which was higher than that obtained with naturally available supplements (flour) from banana, tapioca, potato, or banana peel. During cellulase production by solid-state fermentation, 10 % (w/w) tapioca flour in sawdust (teak wood) moisturized with BSM (1:2, w/v) supported maximum cellulase yield (5,408 U/g dry substrate) on day 3 at 28 °C, which was 2-fold higher than that obtained during SmF. The active cellulase was qualitatively estimated by polyacrylamide gel electrophoresis (PAGE). Native-PAGE (0.25 % CMC impregnated on the 10 % gel) activity staining with congo-red showed a clear zone for CMCase activity, whereas SDS-PAGE showed a distinct band. In conclusion, this study showed that A. flavus strain BS1 is a potent strain for the production of cellulase on lignocellulosic media, the hot enzyme for bioethanol production from the lignocellulosic biomass by SSF.  相似文献   

19.
Cellulase production from lignocellulosic materials was studied in solid-state cultivation by both static and mixed techniques under nonaseptic conditions. The effects of fermentation conditions, such as moisture content, pH, temperature, and aeration, on cellulase production by Trichoderma harzianum using a mixture of wheat straw (80%) and bran (20%) were investigated. With a moisture content of 74% and a pH of 5.8., 18 IU filter paper activity and 198 IU endoglucanase activity/g initial substrate content were obtained in 66 h. The extension from static column cultivation to stirred tank reactor of 65 L capacity gave similar yields of cellulase.  相似文献   

20.
Summary Aspergillus niger produced extracellular cellobiase when grown on different lignocellulosic substrates in solid state fermentation. The enzyme activity and yield were variable according to the carbon source. In Vogel’s medium, the cellobiase productivity was significantly higher on wheat bran, followed by Leptochloa fusca (kallar grass) straw augmented with corn steep liquor. Maximum yield of cellobiase/g wheat bran was significantly higher than the values reported on other potent fungi, bacteria and recombinants, harboring heterologous gene for cellobiase. This enzyme in the presence and absence of Trichoderma reesei and celluloclast, saccharified the biomass and the percentage saccharification as well as glucose yield from lignocellulosic biomass was doubled in its presence. The partially purified enzyme was thermotolerant as evidenced by melting temperature, activation energy demand for active catalysis, enthalpy and entropy of activation for reversible or irreversible thermal inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号