首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive extraction for downstream separation of 1,3-propanediol   总被引:4,自引:0,他引:4  
The downstream separation of 1,3-propanediol from dilute aqueous solution was studied. A process combining reversible reaction of 1, 3-propanediol with acetaldehyde to 2-methyl-1,3-dioxane and a simultaneous extraction of the product by organic solvent appears to be technically feasible and attractive. The dioxane yield was 91-92%, the overall conversion of 1,3-propanediol was ca. 98%, and recovery of dioxane into the organic extractant was 75%.  相似文献   

2.
The possibility of continuous extraction of 1,3-propanediol in a experimental packed column was investigated using a salting-out extraction system of dipotassium phosphate/ethanol. Mass transfer of 1,3-propanediol takes place from the dispersed phase (salt-rich solution) to the continuous phase (ethanol). The influences of flow rate of dispersed phase and size of packing material on partition coefficient and recovery of 1,3-propanediol were investigated and the results were compared with those obtained in spray column and test tube. Furthermore, the influences of various system compositions on hold up of dispersed phase, mass transfer coefficient, and system stability were also studied in the column packed by stainless steel Dixon 3 × 3 mm. It was found that the packed column showed a good extraction efficiency and stability. Besides, 1,3-propanediol recovery of 90.30% was obtained during a 11 h continuous operation when the real fermentation broth was used. At the same time, 94.4% of phosphate could be recovered when 0.2 volume of anhydrous ethanol was added into the raffinate phase at pH 4.0.  相似文献   

3.
1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid–liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.  相似文献   

4.
1,3-丙二醇发酵液后提取技术研究进展   总被引:4,自引:1,他引:3  
1,3-丙二醇是一种重要的化工原料,以甘油或葡萄糖为原料发酵法制备1,3-丙二醇具有原料可再生、反应条件温和等优点,是近年来国内外的研究热点。由微生物发酵获得的1,3-丙二醇发酵液是含多种强极性的醇及盐类的稀溶液,这使得采用传统的分离方法难以经济、有效地的将1,3-丙二醇从发酵液中纯化出来,后提取过程成为发酵法工业化生产1,3-丙二醇的瓶颈。1,3-丙二醇后提取过程主要包括微生物菌体等高分子物质的去除,盐的去除、回收,有机物的纯化和水的去除。以下对应用于以上分离过程的技术的研究进展进行讨论,提出在该领域应该重视的发展方向。  相似文献   

5.
The separation of 1,3-propanediol using molecular distillation has been studied. The effects of operating temperature and feed flow rate through a sequential distillation strategy were investigated. The optimal experimental temperature was at 70°C for separating 1,3-propanediol and the by-product 2,3-butanediol. Meanwhile, the volume flow rate was 10 mL/min. As a result, the recovery of 1,3-propanediol and 2,3-butanediol were 87.6 and 87.5%, respectively. Furthermore, the integrated separation characteristic of 1,3-propanediol was evaluated through macrolevel and micro-level models. The separation factors of 1,3-propanediol versus 2,3-butanediol and glycerol were 0.11 and 1.07, respectively, affirming that the separation of 1,3-propanediol by molecular distillation was feasible.  相似文献   

6.
1,3-Propanediol, a valuable bifunctional molecule, can be produced from renewable resources using microorganisms. It has several promising properties for many synthetic reactions, particularly for polymer and cosmetic industries. By virtue of being a natural product, relevant biochemical pathways can be harnessed into fermentation processes to produce 1,3-propanediol. Various strategies for the microbial production of 1,3-propanediol are reviewed and compared in this article with their promises and constraints. Furthermore, genetic and metabolic engineering could significantly improve product yields and overcome the limitations of fermentation technology. Present review gives an overview on 1,3-propanediol production by wild and recombinant strains. It also attempts to encompass the various issues concerned in utilization of crude glycerol for 1,3-propanediol production, with particular emphasis laid on biodiesel industries. This review also summarizes the present state of strategies studied for the downstream processing and purification of biologically produced 1,3-propanediol. The future prospect of 1,3-propanediol and its potential as a major bulk chemical are discussed under the light of the current research.  相似文献   

7.
The 1,3-regiospecific lipase from Candida deformanscatalysed the esterification of oleic acid and propanediol in biphasic aqueous/lipid medium without organic solvent. The highest conversion of oleic acid into 1,2-propanediol ester was 74% in 24 h with 6.25 mol/l 1,2-propanediol and 0.08 mol/l oleic acid, and produced 100% monoester. The esterification of 1,3-propanediol converted up to 98% of oleic acid into esters in 24 h (with 7.5 mol/l 1,3-propanediol and 0.08 mol/l oleic acid) and formed 35-90% monoester depending on 1,3-propanediol initial concentration (2.5-10 mol/l).  相似文献   

8.
Cholic and deoxycholic acid amides 10-17 have been synthesised from (1R,2R)-1-phenyl-2-amino-1,3-propanediol 2, (1S,2S)-1-phenyl-2-amino-1,3-propanediol 4, (1R,2R)-1-para-nitrophenyl-2-amino-1,3-propanediol 3, (1S,2S)-1-para-nitrophenyl-2-amino-1,3-propanediol 5. Amide 12 derived from N-succinimidyl ester 9 of deoxycholic acid and (1R,2R)-1-phenyl-2-amino-1,3-propanediol 2, found to be active against Cryptococcus neoformans and the amide 17 obtained from N-succinimidyl ester 9 of deoxycholic acid and (1S,2S)-1-para-nitrophenyl-2-amino-1,3-propanediol 5, is found to be potent against various gram-positive bacteria.  相似文献   

9.
Abstract In a mineral medium containing sulfate as terminal electron acceptor, the sulfate-reducing bacterium Desulfovibrio alcoholovorans oxidized stoichiometrically 1 mol glycerol to 1 mol acetate and 1 mol 1,3-propanediol to 1 mol acetate with the concomitant reduction of 0.75 and 1 mol sulfate, respectively; 1 mol 1,2-propanediol was degraded to 0.8 mol acetate and 0.1 mol proprionate, with the reduction of approximately 1 mol sulfate. The maximum specific growth rates (μmax in h−1) were 0.22, 0.086 and 0.09 with glycerol, 1,3-propanediol and 1,2-propanediol, respectively. The growth yields were 12.7 g, 11.1 g and 7.2 g dry weight/mol 1,3-propanediol, glycerol and 1,2-propanediol degraded, respectively. The growth yields and maximum specific growth rates of the H2-transferring associations were also calculated. In the absense of sulfate, all these reduced substrates were degraded to acids and methane when D. alcoholovorans was cocultured with Methanospirillum hungatei . Changes in the metabolic pathway were observed in the degradation of 1,2- and 1,3-propanediol. The metabolic efficiency of D. alcoholovorans to degrade glycerol, 1.2- and 1,3-propanediol is discussed.  相似文献   

10.
粗甘油是生物柴油生产中的主要副产物,一些微生物可将甘油转化为重要化工原料1,3-丙二醇(1,3-PD),而利用这些微生物野生菌株生物合成1,3-PD会存在一些局限性,如底物抑制、产物抑制等。文中从1,3-丙二醇的甘油生物转化途径与这些局限性出发,总结了生物合成中存在的问题,并针对这些问题提出了一些基于基因敲除或基因过表达等基因工程技术的改造方法,综述了利用基因工程菌生物转化甘油生成1,3-丙二醇的最新研究进展。  相似文献   

11.
1,3-Propanediol oxidoreductase encoded by dhaT gene, a gene of 1,3-propanediol regulon, is important in converting glycerol to 1,3-propanediol in Klebsiella pneumoniae. DhaT gene was amplified from the genome of K. pneumoniae, sequenced and its amino acid sequence deduced. A predicted secondary structure and 3D-structural model was constructed by homology modelling. Based on these results, we infer that 1,3-propanediol oxidoreductase belongs to NAD(P)-dependent alcohol dehydrogenase group III of iron-activated dehydrogenases.  相似文献   

12.
聚羟基丁酸路径在克雷伯氏菌中的构建   总被引:1,自引:0,他引:1  
以生物柴油的副产物甘油生产高附加值的1,3-丙二醇,现已成为提升生物柴油产业链经济性的重要途径,而中间代谢产物3-羟基丙醛积累造成细胞死亡,发酵异常终止是生物法生产1,3-丙二醇过程中的关键问题。不同于传统的降低3-羟基丙醛积累的思路,本文从增强克雷伯氏菌对3-羟基丙醛的抗逆性出发,改善克雷伯氏菌1,3-丙二醇的生产性能,首次将聚羟基丁酸路径引入克雷伯氏菌中,构建了新型基因工程菌,并对其1,3-丙二醇发酵性能及聚羟基丁酸代谢进行了初步的研究。经IPTG诱导,工程菌中检测到聚羟基丁酸,其含量随IPTG浓度增加而增大。优化的IPTG浓度为0.5 mmol/L。初始甘油50 g/L时,野生菌可正常发酵生产1,3-丙二醇,1,3-丙二醇浓度达到22.1 g/L,其质量得率为46.4%。当初始甘油达到70 g/L时,由于高浓度3-HPA积累,野生菌发酵终止,而工程菌可正常发酵生产1,3-丙二醇,PDO产量可达31.3 g/L,其质量得率为43.9%。同时检测到聚羟基丁酸积累。研究结果有助于加深对克雷伯氏菌1,3-丙二醇代谢机理的认识,为克雷伯氏菌的进一步优化提供了新的思路。  相似文献   

13.
Microbial fermentation under strictly anaerobic conditions has been conventionally used for the production of 1,3-propanediol, a key raw material required for the synthesis of polytrimethylene terephthalate (PTT) and other polyester fibers. In the current study, we have identified eight strains of microorganism which are able to produce 1,3-propanediol under aerobic condition. Those strains were isolated from garden soil, which were enriched by culturing in LB medium with glycerol added under aerobic condition. The identities of those strains were established based on their 16S rRNA sequences and physiological characteristics. Results indicated 6 strains are Citrobacter freundii and 2 strains are Klebsiella pneumoniae subsp Penumoniae. One of Klebsiella pneumoniae subsp Penumoniae strains, designated as TUAC01, demonstrated comparable levels of 1,3-propanediol oxidoreductase, glycerol dehydratase and glycerol dehydrogenase activity to the anaerobic microorganisms described in the literature. Accordingly, in larger scales (5 l) fed-batch culture the TUAC01 strain showed a remarkable 1,3-propanediol producing potency under aerobic conditions. 60.1 g/l of 1,3-propanediol was yield after 42 h incubation in an agitating bioreactor; and in air-lift bioreactor 66.3 g/l of 1,3-propanediol was yield after 58.5 h incubation. The aerobic ferment process, reduced the product cost and made the biological method of 1,3-propanediol production more attractive.  相似文献   

14.
Batch and continuous cultures of a newly isolated Clostridium butyricum strain were carried out on industrial glycerol, the major by-product of the bio-diesel production process. For both types of cultures, the conversion yield obtained was around 0.55 g of 1,3-propanediol formed per 1 g of glycerol consumed whereas the highest 1,3-propanediol concentration, achieved during the single-stage continuous cultures was 35-48 g l-1. Moreover, the strain presented a strong tolerance at the inhibitory effect of the 1,3-propanediol, even at high concentrations of this substance at the chemostat (e.g. 80 g l-1). 1,3-Propanediol was associated with cell growth whereas acetate and butyrate seemed non growth-associated products. At low and medium dilution rates (until 0.1 h-1), butyrate production was favoured, whereas at higher rates acetate production increased. The maximum 1,3-propanediol volumetric productivity obtained was 5.5 g l-1 h-1. A two-stage continuous fermentation was also carried out. The first stage presented high 1,3-propanediol volumetric productivity, whereas the second stage (with a lower dilution rate) served to further increase the final product concentration. High 1,3-propanediol concentrations were achieved (41-46 g l-1), with a maximum volumetric productivity of 3.4 g l-1 h-1. A cell concentration decrease was reported between the second and the first fermentor.  相似文献   

15.
在补料分批发酵过程中提高比生长速率不仅减少乙醇、甲酸的生成,而且提高1,3-丙二醇的得率和比生产速率.发酵后期甘油的浓度在15~26 g/L时有利于提高1,3-丙二醇的生产.采取在发酵前期控制菌体较高比生长速率和发酵后期控制适宜甘油浓度相结合的策略,有效地提高了1,3-丙二醇的生产,降低副产物乳酸和乙醇的生成.  相似文献   

16.
利用途径工程的方法,将来源于克雷伯氏菌(Klebsiella pneumoniae)的甘油脱水酶基因dhaB和1,3-丙二醇氧化还原酶基因dhaT构建成多顺反子重组质粒pSE-dhaB-dhaT并在大肠杆菌JM 109中进行表达,在大肠杆菌中构建一条新的产1,3-丙二醇代谢途径。研究表明,重组菌株JM 109/pSE-dhaB-dhaT在微好氧条件下,尝试用廉价的乳糖为诱导物、维生素B12为辅酶,可以将甘油转化为1,3-丙二醇,产量达15.34 g/L,甘油转化率为35.7%,对低成本生产1,3-丙二醇作了有益的探索。  相似文献   

17.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,发酵法生产1,3-PD是一条新颖且具有潜在竞争力的生产途径。本研究在前期工作的基础上,将分别来源于大肠杆菌和肺炎克雷伯氏菌的基因片段yqhD和dhaB串联表达,构建重组表达载体pYX212-zeocin-pGAP-yqhD-pGAP-dhaB;并得到重组酿酒酵母(Saccharomyces cerevisiae)W303-1A/pYX212-zeocin-pGAP-yqhD-pGAP-dhaB。该重组菌和对照S.cerevisiae分别以葡萄糖为底物摇瓶发酵72h后,重组酿酒酵母发酵液中1,3-PD含量约为1.5g/L;而对照菌株不产1,3-PD。以上结果表明本研究在国内首次成功构建了直接以葡萄糖为底物发酵生产1,3-PD的酿酒酵母基因工程菌。为进一步将dhaB、yqhD基因导入其他以葡萄糖为底物高产甘油的酵母宿主中表达,获得以葡萄糖为底物一步法发酵高产1,3-丙二醇工程菌打下了坚实的基础。  相似文献   

18.
【目的】香茅醛类化合物具有较好的蚂蚁驱避活性,本研究旨在筛选具有良好驱避活性的新的萜类蚂蚁驱避剂。【方法】以香茅醛为原料合成了香茅醛二甲缩醛、香茅醛二乙缩醛、香茅醛二正丙缩醛、香茅醛二异丁缩醛、香茅醛乙二缩醛、香茅醛1,2-丙二缩醛和香茅醛1,3-丙二缩醛等化合物。所得产品经纯化后,用IR, MS, 1H NMR及13C NMR进行结构表征,并在不同浓度下对小黄家蚁Monomorium pharaonis进行驱避活性测试。【结果】各化合物对小黄家蚁具有一定的驱避活性:在10 mg/mL的浓度下,除香茅醛二甲缩醛以外,其他化合物的驱避率均达到70%以上,其中香茅醛二乙缩醛、香茅醛乙二缩醛和香茅醛1,3-丙二缩醛对小黄家蚁的驱避率分别为87.47%,100%和97.53%。浓度为2.5 mg/mL时,其中5个化合物的驱避效果明显下降,但香茅醛乙二缩醛和香茅醛1,3-丙二缩醛仍然表现出很好的驱避活性,驱避率分别为85.33%和97.10%。方差分析也表明,香茅醛1,3-丙二缩醛在同一浓度下驱避效果最佳,其次是香茅醛乙二缩醛。【结论】结果说明,香茅醛二乙缩醛、香茅醛乙二缩醛和香茅醛1,3 丙二缩醛可以用作小黄家蚁驱避剂,而香茅醛乙二缩醛和香茅醛1,3-丙二缩醛可以达到更好的驱避效果,使用浓度为2.5 mg/mL即可。本研究为良好萜类蚂蚁驱避剂的筛选提供了参考依据。  相似文献   

19.
在5 L发酵罐进行甘油脉冲流加发酵,分析了不同pH值对克雷伯氏肺炎杆菌发酵特性的影响,pH 6.5为菌体最佳生长条件,克雷伯氏肺炎杆菌合成1,3-丙二醇的产量最高。在1,3-丙二醇合成速率较大的对数中前期,进行甘油脉冲流加发酵,提高甘油浓度促进甘油脱水酶、1,3-丙二醇氧化还原酶和甘油脱氢酶活性。不同pH值的脉冲试验表明,甘油脱水酶,2,3-丁二醇脱氢酶比酶活随着pH值的升高而升高,1,3-丙二醇氧化还原酶,乳酸脱氢酶比酶活在pH6.5最高,因此偏酸性的发酵条件和对数期维持一定的甘油浓度能够促进1,3-丙二醇的合成。  相似文献   

20.
The yqhD gene from Escherichia coli encoding 1,3-propanediol oxidoreductase isoenzyme (PDORI) and the tetracycline resistant gene (tetR) from plasmid pHY300PLK were amplified by PCR. They were inserted into vector pUC18, yielding the recombinant expression vector pUC18-yqhD-tetR. The recombinant vector was then cloned into Klebsiella pneumoniae ME-308. The overexpression of PDORI in K. pneumoniae surprisingly led to higher 1,3-propanediol production. The final 1,3-propanediol concentration of recombinant K. pneumoniae reached 67.6 g/l, which was 125.33% of that of the original strain. The maximum activity of recombinant PDORI converting 3-HPA to 1,3-PD reached 110 IU/mg after induction by IPTG at 31°C during the fermentation, while it was only 11 IU/mg under the same conditions for the wild type strain. The K m values of the purified PDORI for 1,3-propanediol and NADP were 12.1 mM and 0.15 mM, respectively. Compared with the original strains, the concentration of the toxic intermediate 3-hydroxypropionaldehyde during the fermentation was also reduced by 22.4%. Both the increased production of 1,3-propanediol and the reduction of toxic intermediate confirmed the significant role of 1,3-propanediol oxidoreductase isoenzyme from E. coli in converting 3-hydroxypropionaldehyde to 1,3-propanediol for 1,3-PD production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号