首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Incorporation of the nucleic acid precursors, orotic acid, adenosine, thymidine, and uridine, was studied in various stages of intraerythrocytic Plasmodium knowlesi from infected rhesus monkeys. Incubation of the parasitized erythrocytes with the precursors was for 3 hr periods using a plasma-free culture medium. The samples containing primarily rings, early trophozoites, or late trophozoites incorporated orotic acid, adenosine, and uridine into RNA; however, these stages exhibited negligible or very low levels of incorporation of any of the precursors into DNA. The sample containing late trophozoite and schizont stages incorporated orotic acid, adenosine, and uridine into RNA, and orotic acid, adenosine, and very low levels of thymidine into DNA. These results indicate that DNA synthesis (the S phase of the cell cycle) occurs very close to the time of nuclear division, and that either the G1 or G2 phase is very short in P. knowlesi. It was also observed that adenosine and orotic acid, 2 precursors which are incorporated into both DNA and RNA, are utilized differently by the intraerythrocytic parasites. Incorporation of orotic acid into RNA and DNA and adenosine incorporation into DNA were continuous for the entire incubation period, whereas incorporation of adenosine into RNA was very low during the last 2 hr of each period. It was further demonstrated that the parasites utilized exogenous uridine for synthesis of RNA, and that the older parasite stages incorporated thymidine into DNA.  相似文献   

2.
Synthesis of ribonucleic acid by isolated rat liver mitochondria   总被引:2,自引:2,他引:0       下载免费PDF全文
Rat liver mitochondria isolated in sucrose-N-tris(hydroxymethyl)methyl-2-aminoethane-sulphonic acid (TES) incorporated [(3)H]UTP into RNA for 1h. Incorporation was inhibited 50% by 1mug of actinomycin D/ml, 1mug of acriflavine/ml and 0.5mug of ethidium bromide/ml but was insensitive to rifampicin, rifamycin SV, streptovarcin and deoxyribonuclease. After the first 10min of incubation, the synthesis was insensitive to ribonuclease. RNA synthesis by mitochondria isolated in sucrose-EDTA was insensitive to actinomycin D and sensitive to ribonuclease during the first 10min of the incubation but thereafter the sensitivities were the same as for mitochondria isolated in sucrose-TES. In a hypo-osmotic medium the relative extent of incorporation of the four ribonucleoside triphosphates into RNA was CTP>UTP=ATP>GTP. In an iso-osmotic medium the incorporation of CTP and GTP decreased. All four nucleotides were incorporated into RNA in a DNA-dependent process, as indicated by the inhibition by actinomycin D. In addition, CTP and ATP were incorporated into the CCA end of mitochondrial tRNA. ATP was also incorporated into an unidentified acid-insoluble compound, which hydrolysed in alkali to a product that was not ATP, ADP or 5'- or 2(3')-AMP. Atractyloside inhibited the incorporation of ATP into RNA with 50% inhibition at 2-3nmol/mg of protein. The [(3)H]UTP-labelled RNA had peaks of 16S and 13S characteristic of mitochondrial rRNA. In addition a peak at 20-21S was observed as well as heterogeneous RNA sedimenting throughout the gradient. The synthesis of all these species was inhibited by actinomycin D, indicating that rat liver mitochondrial DNA codes for mitochondrial rRNA as well as other as yet unidentified species.  相似文献   

3.
Explants of secondary xylern parenchyma tissue from Jerusalemartichoke tubers were induced to undergo cell division and de-differentiateby culture in nutrient medium. The first division was inherentlysynchronous. The system was used to study the involvement ofmessenger RNA synthesis in the induction and continuance ofcell division in previously non-dividing cells. The base analogue 5-fluorouracil (5-FU) inhibited ribosomalRNA synthesis and the processing of ribosomal RNA precursorto mature 25 S and 18 S RNAs. The synthesis of messenger-likeRNAs (heterogeneous in size, labelled to a high specific activityin a pulse incubation, and containing a polyadenylic acid sequence)was less inhibited by 5-FU. Explants grown in 5-FU did not synthesize DNA and did not divide.A direct inhibition of DNA synthesis by 5-FU added late in culturewas reversed by thymidine. An indirect inhibition of DNA synthesisoccurred when 5-FU was present from the start of culture andwas not reversed by thymidine. Because ribosomal RNA synthesisis not necessary for the induction of cell division (Fraser,1975) and because 5-FU was incorporated into mENA, probablyinterfering with its function, these results suggest that 5-FUinhibited the metabolism of mRNA which was required for DNAsynthesis and cell division. The timing of mRNA synthesis required for DNA synthesis andcell division was investigated by adding 5-FU plus thymidineto cultures at various times. By the beginning of DNA synthesisfor the first division, explants were competent, in terms ofmRNA synthesized, to complete the first division. MessengerRNA synthesis occurring before the end of the first divisionallowed explants to undergo at least three more divisions.  相似文献   

4.
Plagemann, Peter G. W. (Western Reserve University, Cleveland, Ohio), and H. Earle Swim. Replication of mengovirus. I. Effect on synthesis of macromolecules by host cell. J. Bacteriol. 91:2317-2326. 1966.-The replication of mengovirus was studied in two strains of Novikoff (rat) hepatoma cells propagated in vitro. The replicative cycle in both strains required 6.5 to 7 hr. Infection resulted in a marked depression of ribonucleic acid (RNA) and protein synthesis by strain N1S1-63. Inhibition of RNA synthesis was reflected by a decrease in the deoxyribonucleic acid (DNA)-dependent RNA polymerase activity of isolated nuclei. Mengovirus had no effect on either protein or RNA synthesis or on the DNA-dependent RNA polymerase activity of a second strain, N1S1-67. The time course of viral-induced synthesis of RNA by cells was studied in cells treated with actinomycin D. It was first detectable between 2.5 and 3 hr after infection and continued until 6.5 to 7 hr. The formation of mature virus was estimated biochemically by measuring the amount of RNA synthesized as a result of viral infection which was resistant to degradation by ribonuclease in the presence of deoxycholate. Approximately 70% of the deoxycholate-ribonuclease-resistant RNA was located in mature virus, and the remainder was double-stranded. The formation of mature virus began about 45 min after viral-directed (actinomycin-resistant) synthesis of RNA was detectable in the cell, and only about 18 to 20% of the total RNA synthesized was incorporated into virus. Release of virus from cells began about 1 hr after maturation was first detectable. Release of virus from cells was accompanied by a loss of a large proportion of their cytoplasmic RNA and protein.  相似文献   

5.
Concentrations of deoxyadenosine which have little effect on net ribonucleic acid (RNA) synthesis or on increase in cell mass selectively inhibit deoxyribonucleic acid (DNA) synthesis in Agmenellum quadruplicatum. Exogenously supplied deoxyadenosine, at concentrations above 10 mug/ml, stimulates DNA degradation. These results are correlated with a rapid loss in viability. Over a narrow concentration range (6-15 mug/ml), deoxyadenosine impairs the division process and induces the formation of elongated cells. Low exogenous concentrations of deoxyadenosine are readily incorporated into both DNA and RNA, with the major portion as DNA.  相似文献   

6.
Granboulan, Nicole (Institute de Recherches sur le Cancer, Villejuif, Seine, France), and Richard M. Franklin. High-resolution autoradiography of Escherichia coli cells infected with bacteriophage R17. J. Bacteriol. 91:849-857. 1966.-The ultrastructural alterations in Escherichia coli infected with the RNA bacteriophage R17 were further investigated by means of the technique of high-resolution autoradiography. Tritiated precursors to ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein were employed in separate experiments. A striking inhibition of cellular RNA, DNA, and protein synthesis was noted. Whereas normal RNA synthesis occurs in the nucleoid, in infected cells RNA synthesis is predominantly cytoplasmic, but later in the latent period, and during the stage of active viral growth, the label is localized in a polar region. In the late stages of viral growth, RNA synthesis occurs only around the crystals. Protein synthesis also becomes localized in a polar region, but DNA synthesis remains confined to the nucleoid. Under conditions of chloramphenicol inhibition of viral-coat protein synthesis, RNA label is localized in the paranuclear lesion, providing further indication that RNA forms this fibrillar structure.  相似文献   

7.
8.
RNA polymerase can both synthesize and cleave RNA. Both reactions occur at the same catalytic center containing two magnesium ions bound to three aspartic acid residues of the absolutely conserved NADFDGD motif of the RNA polymerase beta subunit. We have demonstrated that RNA polymerase from Deinococcus radiodurans possesses much higher rate of intrinsic RNA cleavage than RNA polymerase from Escherichia coli (the difference in the rates is about 15-fold at 20 degrees C). However, these RNA polymerases do not differ in the rates of RNA synthesis. Comparison of the RNA polymerase sequences adjacent to the NADFDGD motif reveals the only amino acid substitution in this region (Glu751 in D. radiodurans vs. Ala455 in E. coli), which is localized in the secondary enzyme channel and can potentially affect the rate of RNA cleavage. Introduction of the corresponding substitution in the E. coli RNA polymerase leads to a slight (about 2-3-fold) increase in the cleavage rate, but does not affect RNA synthesis. Thus, the difference in the RNA cleavage rates between E. coli and D. radiodurans RNA polymerases is likely determined by multiple amino acid substitutions, which do not affect the rate of RNA synthesis and are localized in several regions of the active center.  相似文献   

9.
The production of virus-specific ribonucleic acid (RNA) was investigated in KB cells infected with herpes simplex virus. A fraction of RNA annealable to virus deoxyribonucleic acid (DNA) was found in these cells as early as 3 hr after virus inoculation. Production of this species of RNA increased up to 6 or 7 hr after infection, at which time elaboration of virus messenger RNA (mRNA) declined. At 24 hr after infection, the rate of incorporation of uridine into this RNA was approximately one-half of the rate present at 6 hr after inoculation. Nucleotide analysis of the RNA annealable to virus DNA was compatible with that expected for virus mRNA. Centrifugation showed considerable spread in the size of the virus-induced nucleic acid, the bulk of this RNA sedimenting between 12 and 32S. Incorporation of uridine into cell mRNA, ribosomal precursor RNA, and soluble RNA was suppressed rapidly after infection. As is the case with most other cytocidal viruses investigated to date, virus-induced suppression of cell RNA synthesis appears to be a primary mechanism of cell injury.  相似文献   

10.
Macromolecule synthesis in yeast spheroplasts   总被引:27,自引:16,他引:11  
Conditions have been established for the preparation of spheroplasts of Saccharomyces cerevisiae which are able to increase their net content of protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), several-fold upon incubation in a medium stabilized with 1 m sorbitol. The rate of RNA and protein synthesis in the spheroplasts is nearly the same as that occurring in whole cells incubated under the same conditions; DNA synthesis occurs at about half the whole cell rate. The spheroplasts synthesize transfer RNA and ribosomal RNA. The newly synthesized ribosomal RNA is incorporated into ribosomes and polysomes. The polysomes are the site of protein synthesis in these spheroplasts. Greater than 90% of the total RNA can be solubilized by treatment of the spheroplasts with sodium dodecyl sulfate or sodium deoxycholate. These spheroplast preparations appear to be a useful subject for the study of RNA metabolism in yeast.  相似文献   

11.
Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil   总被引:2,自引:1,他引:1  
Reich, Melvin (The George Washington University School of Medicine, Washington, D.C.), and H. George Mandel. Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil. J. Bacteriol. 91:517-523. 1966.-5-Fluorouracil (FU) produced a marked inhibition of growth and deoxyribonucleic acid (DNA) synthesis in Bacillus cereus 569H. Protein and ribonucleic acid (RNA) synthesis were not specifically inhibited, and proceeded at the rate of turbidometric increase of the cells. Cell-wall synthesis, respiration, and penicillinase production continued in the presence of FU at essentially the control rate. The addition of equimolar concentrations of uracil and FU prevented growth inhibition but did not restore DNA synthesis. The addition of thymidine with FU did not relieve growth inhibition but did restore the DNA content to normal. Thymidine supplementation also increased the quantity of FU, but not uracil, incorporated into RNA and the acid-soluble fraction. The data indicate that inhibition of growth can be dissociated from inhibition of DNA synthesis and that more DNA is present in normal cells than is needed for growth and reproduction.  相似文献   

12.
1. Nuclei from rat liver incubated with S-adenosyl[methyl-(14)C]methionine incorporated radioactivity into RNA and into lipid and protein. 2. All of the labelled RNA was extracted from the nuclei with trichloroacetic acid at 90 degrees C. 3. The [(14)C]methyl-group incorporation into the hot-trichloroacetic acid extract was 30% inhibited by the addition of actinomycin D (100mug/mg of DNA) or by the omission of CTP, GTP and UTP. 4. Assuming that the main substrate for this triphosphate-dependent methylation was newly synthesized precursor rRNA containing one methyl group/30 uridylate residues, it was calculated that approx. 60% of the [(14)C]UMP incorporated under similar conditions represented precursor rRNA synthesis. 5. In agreement with this, low concentrations of actinomycin D (approx. 1mug/mg of DNA) sufficient to abolish the triphosphate-dependent incorporation of [(14)C]methyl group inhibited 68% of the [(14)C]UMP incorporation. 6. The incorporation of [(14)C]UMP by nuclei from starved animals decreased progressively with increasing periods of starvation, whereas the triphosphate-dependent [(14)C]methyl-group incorporation was not further decreased after 1 day of starvation. 7. This suggests that precursor rRNA synthesis decreased within 1 day whereas other species of RNA were affected only after longer periods of starvation.  相似文献   

13.
We have studied the presence of a cloned fragment of DNA from Drosophila melanogaster in other organisms by means of nucleic acid hybridization analysis. The isolated region is localized in polytene chromosomes at the 63F subdivision. This region includes a puff that responds within minutes to ecdysone stimulation. We have found that 63F DNA from D. melanogaster hybridizes 'in situ' to both DNA and RNA from D. simulans, D. teissieri, and D. hydei. In all these species the isolated DNA remains associated with one early-ecdysone stimulated puff. The isolated Drosophila recombinant DNA is also complementary to polyadenylated RNA from foetal and adult rat liver but fails to hybridize to the nonpolyadenylated RNA classes from both sources and to polyadenylated RNA from rat mammary glands.  相似文献   

14.
Infection of human embryonic kidney (HEK) cell cultures with adenovirus types 2 or 12 resulted in an initial drop in the rate of incorporation of (3)H-thymidine into deoxyribonucleic acid (DNA) during the early latent period of virus growth, followed by a marked rise in label uptake. It was shown by cesium chloride isopycnic centrifugation that, after adenovirus 2 infection, there was a decrease in the rate of incorporation of thymidine into cellular DNA. Moreover, DNA-DNA hybridization experiments revealed that, by 28 to 32 hr after infection with either adenovirus 2 or 12, the amount of isolated pulse-labeled DNA capable of hybridizing with HEK cell DNA was reduced by approximately 60 to 70%. Autoradiographic measurements showed that the inhibition of cellular DNA synthesis was due to a decrease in the ability of an infected cell to synthesize DNA. The adenovirus-induced inhibition of host cell DNA synthesis was not due to degradation of cellular DNA. (3)H-thymidine incorporated into cellular DNA at the time of infection remained acid-precipitable, and labeled material was not incorporated into viral DNA. Furthermore, when zone sedimentation through neutral or alkaline sucrose density gradients was employed, no detectable change was observed in the sedimentation rate of this cellular DNA at various times after infection with adenovirus 2 or 12. In addition, there was no increase in deoxyribonuclease activity in cells infected with either virus. Cultures infected for 38 hr with adenovirus 2 or 12 incorporated three to four times as much (3)H-uridine into ribonucleic acid (RNA) as did non-infected cultures. Furthermore, the net RNA synthesized by infected cultures substantially exceeded that of control cultures. The activity of thymidine kinase was induced, but there was no stimulation of uridine kinase.  相似文献   

15.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

16.
The in vitro product of mouse leukemia virus deoxyribonucleic acid (DNA) polymerase can be separated into two fractions by sedimentation in sucrose gradients. These two fractions were analyzed for their content of single-stranded DNA, double-stranded DNA, and DNA-ribonucleic acid (RNA) hybrid by (i) digestion with enzymes of known specificity and (ii) equilibrium centrifugation in Cs(2)SO(4) gradients. The major fraction early in the reaction contained equal amounts of single-stranded DNA and DNA-RNA hybrid and little double-stranded DNA. The major fraction after extensive synthesis contained equal amounts of single-and double-stranded DNA and little hybrid. In the presence of actinomycin D, the predominant product was single-stranded DNA. To account for these various forms of DNA, we postulate the following model: the first DNA synthesis occurs in a replicative complex containing growing DNA molecules attached to an RNA molecule. Each DNA molecule is displaced as single-stranded DNA by the synthesis of the following DNA strand, and the single-stranded DNA is copied to form double-stranded DNA either before or after release of the single strand from the RNA. Actinomycin blocks this conversion of single-to double-stranded DNA.  相似文献   

17.
Joe L. Key 《Plant physiology》1966,41(8):1257-1264
The effects of several base analogues and cycloheximide on RNA synthesis, protein synthesis, and cell elongation were studied in excised soybean hypocotyl. None of the pyrimidine analogues tested affected growth or protein synthesis; only 5-fluorouracil appreciably inhibited RNA synthesis. 8-Azaguanine and 6-methylpurine markedly inhibited RNA and protein synthesis and cell elongation. Cycloheximide effectively inhibited both cell elongation and protein synthesis.The results show that 5-fluorouracil selectively inhibited ribosomal and soluble RNA synthesis without affecting the synthesis of D-RNA. These results indicate that the requirement for RNA synthesis to support continued protein synthesis and cell elongation is restricted to the synthesis of D-RNA.5-Fluorouracil was incorporated into all classes of RNA in a form believed to be 5-fluorouridylic acid.Cycloheximide markedly inhibited the accumulation of ribosomal RNA, but the results indicate that CH did not inhibit, per se, the synthesis of ribosomal RNA. The accumulation of newly synthesized D-RNA was only slightly affected by cycloheximide. These results show that the inhibition of cell elongation by cycloheximide correlates with the inhibition of protein synthesis, but not with the effect on RNA metabolism.  相似文献   

18.
This paper describes the kinetics of cell division in populations of cells which have been grown first under conditions which specifically inhibit deoxyribonucleic acid (DNA) synthesis (in the absence of thymine or the presence of nalidixic acid) and subsequently under conditions which allow DNA synthesis to recommence. Cell division does not take place during inhibition of DNA synthesis. There is a delay between recommencement of DNA synthesis and recommencement of cell division. The length of this delay increases as a function of the length of the preceding period of inhibition of DNA synthesis. The first division after this delay is partly synchronous, but all subsequent division is asynchronous. These observations are explained in terms of a model which supposes that the formation of initiator of chromosome replication during a period when DNA synthesis is inhibited results in a block to cell division. Division does not then occur until this "extra" round of DNA synthesis is completed.  相似文献   

19.
20.
Osmotically shocked spheroplasts obtained from Pseudomonas schuylkilliensis strain P contained about 54, 32, 28, and 82% of the total cellular protein, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and phospholipid, respectively. This preparation was capable of incorporating (32)P-orthophosphate into RNA and DNA, (3)H-adenosine or (3)H-uridine into RNA, and (3)H-leucine or (14)C-phenylalanine into protein. These activities were not found in the cytoplasmic fraction which contained most of the glucose-6-phosphate dehydrogenase activity. The synthesis of RNA by intact and disrupted spheroplast preparations was sensitive to actinomycin D, chromomycin A(3), streptovaricin, rifampin, Lubrol W, Triton X-100, and sodium deoxycholate, whereas RNA synthesis by intact cells was insensitive to these agents. Ethylenediaminetetraacetic acid, porcine pancreatic lipase, the protoplast-bursting factor, high concentrations of salts, and washing the preparation inhibited the synthesis of RNA by disrupted spheroplasts but had little or no effect on intact spheroplasts. Most of the newly synthesized RNA made by disrupted spheroplasts had the characteristics of messenger RNA. The DNA present in this preparation functioned as a template for RNA synthesis; continued protein synthesis was dependent on concomitant RNA synthesis. An unusual feature of the preparation was the finding that the synthesis of macromolecules was completely dependent on oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号