首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C A Akdis  K Blaser 《FASEB journal》1999,13(6):603-609
Specific immunotherapy (SIT) is widely used for treatment of allergic diseases and could potentially be applied in other immunological disorders. Induction of specific unresponsiveness (anergy) in peripheral T cells and recovery by cytokines from the tissue microenvironment represent two key steps in SIT with whole allergen or antigenic T cell peptides (PIT). The anergy is directed against the T cell epitopes of the respective antigen and characterized by suppressed proliferative and cytokine responses. It is initiated by autocrine action of IL-10, which is increasingly produced by the antigen-specific T cells. Later in therapy, B cells and monocytes also produce IL-10. The anergic T cells can be reactivated by different cytokines. Whereas IL-15 and IL-2 generate Th1 cytokine profile and an IgG4 antibody response, IL-4 reactivates a Th2 cytokine pattern and IgE antibodies. Increased IL-10 suppresses IgE and enhances IgG4 synthesis, resulting in a decreased antigen-specific IgE:IgG4 ratio, as observed normally in patients after SIT or PIT. The same state of anergy against the major bee venom allergen, phospholipase A2, can be observed in subjects naturally anergized after multiple bee stings. Together, these data demonstrate the pivotal role of autocrine IL-10 in induction of specific T cell anergy and the important participation of the cytokine microenvironment in SIT. Furthermore, knowledge of the mechanisms explaining reasons for success or failure of SIT may enable possible predictive measures of the treatment.  相似文献   

2.
We examined the ability of human monocyte-derived interleukin (IL)-10-induced semi-mature dendritic cells (semi-mDCs) that had been pulsed with soluble protein and necrotic cellular fragments to induce an antigen (Ag)-specific anergy in CD4(+) and CD8(+) T cells. IL-10 converted normal immature DCs (iDCs) into semi-mDCs during the maturation. In contrast to normal iDCs and mature DCs, IL-10-induced semi-mDCs as well as IL-10-treated iDCs not only had reduced their allogeneic T cell-stimulatory capacity, but also induced an allogeneic Ag-specific anergy in T cells. Normal mDCs that had been pulsed with tetanus toxin (TT) or allogeneic necrotic cellular fragments caused further activation of TT-specific CD4(+) T cells or allogeneic fibroblast-specific CD8(+) T cells, Ag-pulsed IL-10-induced semi-mDCs induced an anergic state in both cell types. Thus, our results suggest that IL-10-induced semi-mDCs induce an Ag-specific anergy in CD4(+) and CD8(+) T cells via presentation of the internalized protein and cross-presentation of the phagocytosed cellular fragments.  相似文献   

3.
Activation of alloreactive T cells by APCs such as dendritic cells (DC) has been implicated as crucial step in transplant rejection. In contrast, it has been proposed that macrophages (Mphi) maintain tolerance toward alloantigens. It was therefore the aim of this study to further analyze the T cell-stimulatory capacity of mature DC and Mphi in vitro using the model of allogeneic MLR. There was a strong proliferative response in T cells cocultured with DC, which was further increased upon restimulation in a secondary MLR. In contrast, T cells did not proliferate in cocultures with Mphi despite costimulation with anti-CD28 and IL-2. Cytokine analysis revealed considerable levels of IL-10 in cocultures of T cells with Mphi, whereas high amounts of IL-2 and IFN-gamma were present in cocultures with DC. There was only minimal T cell proliferation in a secondary MLR when T cells were rescued from primary MLR with Mphi and restimulated with DC of the same donor, or DC of an unrelated donor (third party), whereas a strong primary proliferative response was observed in resting T cells, demonstrating induction of T cell anergy by Mphi. Functional analysis of T cells rescued from cocultures with Mphi demonstrated that anergy was at least partly mediated by IL-10-producing regulatory T cells induced by Mphi. These results demonstrate that Mphi drive the differentiation of regulatory T cells and mediate anergy in allogeneic T cells, supporting the concept that Mphi maintain peripheral tolerance in vivo.  相似文献   

4.
Interleukin-10 (IL-10) is a cytokine derived from CD4+ T-helper type 2 (T(H2)) cells identified as a suppressor of cytokines from T-helper type 1(T(H1)) cells. Interleukin-12 (IL-12) is produced by B cells, macrophages and dendritic cells, and primarily regulates T(H1) cell differentiation, while suppressing the expansion of T(H2) cell clones. Interferon-gamma (IFN-gamma) is a product of T(H1) cells and exerts inhibitory effects on T(H2) cell differentiation. These cytokines have been implicated in the pathogenesis of asthma and allergies. In this context, IL-12 and IFN-gamma production in asthma have been found to be decreased, and this may reduce their capacity to inhibit IgE synthesis and allergic inflammation. IL-10 is a potent inhibitor of monocyte/macrophage function, suppressing the production of many pro-inflammatory cytokines. A relative underproduction of IL-10 from alveolar macrophages of atopic asthmatics has been reported. Therapeutic modulation of T(H1)/T(H2) imbalance in asthma and allergy by mycobacterial vaccine, specific immunotherapy and cytoline-guanosine dinucleotide motif may lead to increases in IL-12 and IFN-gamma production. Stimulation of IL-10 production by antigen-specific T-cells during immunotherapy may lead to anergy through inhibition of CD28-costimulatory molecule signalling by IL-10s anti-inflammatory effect on basophils, mast cells and eosinophils.  相似文献   

5.
Costimulation (signal 2) has been proposed to inhibit the induction of T cell clonal anergy by either directly antagonizing negative signals arising from TCR engagement (signal 1) or by synergizing with signal 1 to produce IL-2, which in turn leads to proliferation and dilution of negative regulatory factors. To better define the cellular events that lead to the induction of anergy, we used the immunosuppressive agent rapamycin, which blocks T cell proliferation in late G1 phase but does not affect costimulation-dependent IL-2 production. Our data demonstrate that full T cell activation (signal 1 plus 2) in the presence of rapamycin results in profound T cell anergy, despite the fact that these cells produce copious amounts of IL-2. Similar to conventional anergy (induction by signal 1 alone), the rapamycin-induced anergic cells show a decrease in mitogen-activated protein kinase activation, and these cells can be rescued by culture in IL-2. Interestingly, the rapamycin-induced anergic cells display a more profound block in IL-3 and IFN-gamma production upon rechallenge. Finally, in contrast to rapamycin, full T cell activation in the presence of hydroxyurea (which inhibits the cell cycle in early S phase) did not result in anergy. These data suggest that it is neither the direct effect of costimulation nor the subsequent T cell proliferation that prevents anergy induction, but rather the biochemical events that occur upon progression through the cell cycle from G1 into S phase.  相似文献   

6.
Interleukin 10 (IL-10) has been described as a cytokine inhibitory factor downregulating IL-2 secretion and inducing T cell anergy. The data reported in this study show that preincubation of resting T cells from the human CD4+ clone SP-B21 (and clone TA-23.6) with IL-10 strongly enhances their capacity to further produce IL-2, interferon gamma (IFN-gamma), IL-4 and tumour necrosis factor alpha (TNF-alpha) after subsequent activation. In contrast, when IL-10 was added during the activation step, the previously reported specific inhibition of IL-2 synthesis was observed. Flow cytometric analysis of intracellular IL-2- and IL-4-producing cells revealed that preincubation with IL-10 increased the number of cytokine-producing cells, but did not affect their individual ability to produce these cytokines. We further show that IL-10 plays a dose-dependent role of viability maintenance factor. This effect relates to a direct anti-apoptotic effect of IL-10, which is likely independent of the expression of bcl-2, bcl-x and fas. Such paradoxal properties of IL-10 on T cells should be considered when aiming at using IL-10 as an immunosuppressive molecule in the treatment of diseases.  相似文献   

7.
Role of CD47 in the induction of human naive T cell anergy   总被引:6,自引:0,他引:6  
We recently reported that CD47 ligation inhibited IL-2 release by umbilical cord blood mononuclear cells activated in the presence of IL-12, but not IL-4, preventing the induction of IL-12Rbeta(2) expression and the acquisition of Th1, but not the Th2 phenotype. Here we show that in the absence of exogenous cytokine at priming, CD47 ligation of umbilical cord blood mononuclear cells promotes the development of hyporesponsive T cells. Naive cells were treated with CD47 mAb for 3 days, expanded in IL-2 for 9-12 days, and restimulated by CD3 and CD28 coengagement. Effector T cells generated under these conditions were considered to be anergic because they produced a reduced amount of IL-2 at the single-cell level and displayed an impaired capacity 1) to proliferate, 2) to secrete Th1/Th2 cytokines, and 3) to respond to IL-2, IL-4, or IL-12. Moreover, CD47 mAb strongly suppressed IL-2 production and IL-2Ralpha expression in primary cultures and IL-2 response of activated naive T cells. Induction of anergy by CD47 mAb was IL-10 independent, whereas inclusion of IL-2 and IL-4, but not IL-7, at priming fully restored T cell activation. Furthermore, CD28 costimulation prevented induction of anergy. Thus, CD47 may represent a potential target to induce anergy and prevent undesired Th0/Th1 responses such as graft vs host diseases, allograft rejection, or autoimmune diseases.  相似文献   

8.
Although FoxP3 has been shown to be the most specific marker for regulatory CD4(+) T cells, its significance in the CD8(+) T cell population is not well understood. In this study, we show that the in vitro stimulation of human PBMC with hepatitis C virus or Flu virus-specific peptides gives rise to two distinct Ag-specific T cell populations: FoxP3(-) and FoxP3(+)CD8(+) T cells. The FoxP3(+) virus-specific CD8(+) T cells share phenotypical markers of regulatory T cells, such as CTLA-4 and glucocorticoid-induced TNFR family-related gene, and do produce moderate amounts of IFN-gamma but not IL-2 or IL-10. IL-2 and IL-10 are critical cytokines, however, because the expansion of virus-specific FoxP3(+)CD8(+) T cells is blocked by IL-2- or IL-10-neutralizing mAbs. The virus-specific FoxP3(+)CD8(+) T cells have a reduced proliferative capacity, indicating anergy, and display a cell-cell contact-dependent suppressive activity. Taken together, our results indicate that stimulation with a defined viral Ag leads to the expansion of two different cell populations: FoxP3(-) memory/effector as well as FoxP3(+) regulatory virus-specific CD8(+) T cells.  相似文献   

9.
Clonal anergy is maintained independently of T cell proliferation   总被引:2,自引:0,他引:2  
Ag encounter in the absence of proliferation results in the establishment of T cell unresponsiveness, also known as T cell clonal anergy. Anergic T cells fail to proliferate upon restimulation because of the inability to produce IL-2 and to properly regulate the G(1) cell cycle checkpoint. Because optimal TCR and CD28 engagement can elicit IL-2-independent cell cycle progression, we investigated whether CD3/CD28-mediated activation of anergic T cells could overcome G(1) cell cycle block, drive T cell proliferation, and thus reverse clonal anergy. We show here that although antigenic stimulation fails to elicit G(1)-to-S transition, anti-CD3/CD28 mAbs allow proper cell cycle progression and proliferation of anergic T cells. However, CD3/CD28-mediated cell division does not restore Ag responsiveness. Our data instead indicate that reversal of clonal anergy specifically requires an IL-2-dependent, rapamycin-sensitive signal, which is delivered independently of cell proliferation. Thus, by tracing proliferation and Ag responsiveness of individual cells, we show that whereas both TCR/CD28 and IL-2-generated signals can drive T cell proliferation, only IL-2/IL-2R interaction regulates Ag responsiveness, indicating that proliferation and clonal anergy can be independently regulated.  相似文献   

10.
Infectious pathogens can selectively stimulate activation or suppression of T cells to facilitate their survival within humans. In this study we demonstrate that the trematode parasite Schistosoma mansoni has evolved with two distinct mechanisms to suppress T cell activation. During the initial 4- to 12-wk acute stages of a worm infection both CD4(+) and CD8(+) T cells are anergized. In contrast, infection with male and female worms induced T cell anergy at 4 wk, which was replaced after egg laying by T cell suppression via a known NO-dependent mechanism, that was detected for up to 40 wk after infection. Worm-induced anergy was mediated by splenic F4/80(+) macrophages (Mphi) via an IL-4-, IL-13-, IL-10-, TGF-beta-, and NO-independent, but cell contact-dependent, mechanism. F4/80(+) Mphi isolated from worm-infected mice were shown to induce anergy of naive T cells in vitro. Furthermore, naive Mphi exposed to live worms in vitro also induced anergy in naive T cells. Flow cytometry on in vivo and in vitro worm-modulated Mphi revealed that of the family of B7 costimulatory molecules, only programmed death ligand 1 (PD-L1) was selectively up-regulated. The addition of inhibitory mAb against PD-L1, but not PD-L2, to worm-modulated Mphi completely blocked the ability of these cells to anergize T cells. These data highlight a novel mechanism through which S. mansoni worms have usurped the natural function of PD-L1 to reduce T cell activation during early acute stages of infection before the subsequent emergence of egg-induced T cell suppression in the chronic stages of infection.  相似文献   

11.
Activated T cells in spontaneous lupus presumably bypass normal tolerance mechanisms in the periphery, since thymic tolerance appears intact. To determine whether such T cells indeed avoid in vivo peripheral tolerance mechanisms, we assessed their activation and recall responses after in vivo Ag stimulation in the absence of exogenously supplied costimulatory signals. Naive CD4(+) AND (transgenic mice bearing rearranged TCR specific for pigeon cytochrome c, peptides 88-104) TCR-transgenic T cells, specific for pigeon cytochrome c, from lupus-prone Fas-intact MRL/Mp+(Fas-lpr) and from H-2(k)-matched control CBA/CaJ and B10.BR mice (MRL.AND, CBA.AND, and B10.AND, respectively) were adoptively transferred into (MRL x CBA)F(1) or (MRL x B10)F(1) recipients transgenically expressing membrane-bound pigeon cytochrome c as a self-Ag. MRL.AND and control CBA.AND and B10.AND-transgenic T cells were activated and divided after transfer, indicating encounter with their cognate Ag; however, T cells from CBA.AND and B10.AND mice were impaired in their ability to proliferate and produce IL-2 after challenge with pigeon cytochrome c in ex vivo recall assays, a typical phenotype of anergized cells. By contrast, MRL.AND T cells proliferated more, and a significantly higher percentage of such cells produced IL-2, compared with control T cells. This observation that MRL T cells avoided anergy induction in vivo was confirmed in an in vitro system where the cells were stimulated with an anti-CD3 in the absence of a costimulatory signal. These experiments provide direct evidence that CD4(+) T cells from Fas-intact lupus-prone MRL mice are more resistant than nonautoimmune control cells to anergy induction. Anergy avoidance in the periphery might contribute to the characteristic finding in lupus of inappropriate T cell activation in response to ubiquitous self-Ags.  相似文献   

12.
The goal of these studies was to define the stimuli and factors that control the induction of anergy in unimmunized resting T lymphocytes. Initial experiments, aimed at establishing the system, showed that exposure of Th1 but not Th2 clones to immobilized anti-CD3 leads to a block in autocrine growth factor production and proliferation upon subsequent restimulation with Ag+APC. Anergy is not prevented by accessory cells, suggesting that this model of T cell tolerance may be due to receptor-mediated inhibitory signals, independent of costimulatory molecules. Culture of small (resting) unimmunized T lymphocytes with anti-CD3 +/- IL-2 induces unresponsiveness to restimulation with anti-CD3, but culture with anti-CD3+IL-4, which stimulates the differentiation of resting cells into IL-4 producers, does not induce anergy. Thus, IL-4-producing clones and bulk populations of IL-4-producing T cells are resistant to Ag receptor-mediated inhibitory stimuli. These results provide experimental models for studying the mechanisms of anergy in normal, unselected, mature T cells, and demonstrate fundamental similarities between cloned cell lines and unimmunized T lymphocytes in the induction of anergy.  相似文献   

13.
In this report we extend the in vitro clonal anergy model to examine the regulation of proliferation in T cells that secrete both IL-2 and IL-4. Newly cloned Ag-specific murine T cells are shown to depend on both IL-2 and IL-4 synthesis for maximal proliferation. Whereas IL-2 responsiveness is constitutive in these cells, IL-4 responsiveness develops only after Ag and APC stimulation. Remarkably, proliferation of these cells to Ag is sensitive to inhibition by clonal anergy, even though IL-4 synthesis remains inducible. Anergy in these cells is associated with an inability to respond to IL-4, in addition to the development of an IL-2 production defect. The results suggest that anergy induction may be capable of preventing the clonal expansion of autoreactive T cells producing both IL-2 and IL-4 in vivo.  相似文献   

14.
15.
We have investigated the response of T cells to staphylococcal enterotoxin A (SEA) injections in vivo. We found that a single injection of SEA with an optimal dose of 10μg increased the expression of both CD4 and CD8 significantly. There was expansion of SEA-reactive T cells in vivo after SEA re-injection and the time interval between injections strongly influenced the responsiveness of CD4^+ and CD8^+ T cells. Anergy of T cells was observed after three SEA treatments. The time interval between injections mainly affected the unresponsiveness of CD4^+ T cells, not CD8^+ T cells. Marked deletion followed by anergy of CD4^+ T cells was induced at short intervals, and anergy without obvious deletion of CD4^+ T cells was induced at long intervals. We also found that the anergic state was reversible in vivo. Repeated SEA stimulation led to down-regulation of interleukin (IL)-2, and high levels of IL-10. This study showed that both CD4^+ and CD8^+ SEA-primed T cells were responsive to SEA rechallenge in vivo, and a third injection was needed to induce the anergy of T cells.  相似文献   

16.
Differentiation of regulatory T cells 1 is induced by CD2 costimulation.   总被引:7,自引:0,他引:7  
Induction and maintenance of peripheral tolerance is an important phenomenon for the control of homeostasis in the immune system. There is now compelling evidence for CD4(+) T cells that prevent immune pathology, both in autoimmunity and in transplantation. However, the mechanisms involved in the specific differentiation of these T cells are unknown. We had previously shown that repetitive stimulations of naive T cells in the presence of IL-10 induce the differentiation of T regulatory cells 1. We further dissected the mechanism of IL-10 function and demonstrated that IL-10 acts by the down-regulation of most costimulatory molecules without modifying the expression of CD58. Using artificial APCs expressing various costimulatory molecules, we demonstrated that, in contrast to other costimulation patterns, costimulation via CD2 alone, in the absence of costimulations through CD28- or LFA-1, induced T cell anergy in an IL-10-independent pathway along with the differentiation of Ag-specific regulatory T cells. T regulatory cell-1 differentiation via CD2 was very efficient as both high IL-10 secretion and regulatory function were observed after the first stimulation of naive T cells with CD32-CD58 L cells. The possibility to rapidly induce the differentiation of Ag-specific regulatory T cells will certainly accelerate their characterization and their potential use as regulators of T cell-mediated diseases.  相似文献   

17.
In normal mice, a subpopulation of CD4 T cells constitutively express CD25. These cells behave as regulatory T cells in autoimmune and inflammatory reactions, in tolerance to superantigens, and in peripheral T-cell homeostasis. They are unable to produce interleukin (IL)-2, and are dependent on IL-2 for growth in vitro and in vivo. CD4 CD25(+) T cells spontaneously secrete IL-10, which is involved in some of their regulatory functions. They are resistant to apoptosis, but can be tolerized by anergy.  相似文献   

18.
Despite high viral loads, T cells from sooty mangabey (SM) monkeys that are naturally infected with SIV but remain clinically asymptomatic, proliferate and demonstrate normal Ag-specific memory recall CD4(+) T cell responses. In contrast, CD4(+) T cells from rhesus macaques (RM) experimentally infected with SIV lose Ag-specific memory recall responses and develop immunological anergy. To elucidate the mechanisms for these distinct outcomes of lentiviral infection, highly enriched alloreactive CD4(+) T cells from humans, RM, and SM were anergized by TCR-only stimulation (signal 1 alone) and subsequently challenged with anti-CD3/anti-CD28 Abs (signals 1 + 2). Whereas alloreactive CD4(+)T cells from humans and RM became anergized, surprisingly, CD4(+) T cells from SM showed marked proliferation and IL-2 synthesis after restimulation. This resistance to undergo anergy was not secondary to a global deficiency in anergy induction of CD4(+) T cells from SM since incubation of CD4(+) T cells with anti-CD3 alone in the presence of rapamycin readily induced anergy in these cells. The resistance to undergo anergy was reasoned to be due to the ability of CD4(+) T cells from SM to synthesize IL-2 when incubated with anti-CD3 alone. Analysis of phosphorylated kinases involved in T cell activation showed that the activation of CD4(+) T cells by signal 1 in SM elicited a pattern of response that required both signals 1 + 2 in humans and RM. This function of CD4(+) T cells from SM may contribute to the resistance of this species to SIV-induced disease.  相似文献   

19.
T cell anergy is one of the mechanisms of immunological tolerance. We examined in this study the distinct responses of Th1 and Th2 cells to in vitro anergic stimulation using Th1 and Th2 cells from two strains of T cell receptor transgenic mice. Proliferation of the Th2 cells was difficult to suppress by anergic stimulation, while that of Th1 cells was significantly inhibited even by weak stimulation. However, IL-4 production by Th2 cells was definitely reduced by anergic stimulation, although the inhibition level of IL-4 was lower than that of IFN-gamma production by Th1 cells. We also examined the reversal of anergy in both subsets. While both the anergized Th1 and Th2 cells responded to IL-2 stimulation, only the anergy of the Th2 cells could be reversed. This result indicates that progression of the cell cycle was not sufficient for anergy reversal in Th1 cells. Our findings indicate that the induction and reversal of T cell anergy might be affected by the distinct signaling features of Th1 and Th2 cells.  相似文献   

20.
Fingerprints of anergic T cells   总被引:7,自引:0,他引:7  
Peripheral T cell tolerance may result from activation-induced cell death [1], anergy [1], and/or immune response modulation by regulatory T cells [2]. In mice that express a transgenic receptor specific for peptide 111-119 of influenza hemagglutinin presented by E(d) class II MHC molecules as well as hemagglutinin under control of the immunoglobulin-kappa promoter, we have found that anergic T cells [3] can also have immunoregulatory function and secrete IL-10 [4]. In order to obtain information on molecular mechanisms involved in anergy and immunoregulation, we have compared expression levels of 1176 genes in anergic, naive, and recently activated CD4+ T cells of the same specificity by gene array analysis. The results provide a plausible explanation for the anergic phenotype in terms of proliferation, provide new information on the surface phenotype of in vivo-generated anergic CD4+ T cells, and yield clues with regard to new candidate genes that may be responsible for the restricted cytokine production of in vivo-anergized CD4+ T cells. The molecular fingerprints of such T cells should enable the tracking of this small population in the normal organism and the study of their role in immunoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号