首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway can be activated by a variety of stress stimuli such as UV radiation and osmotic stress. The regulation and role of this pathway in death receptor-induced apoptosis remain unclear and may depend on the specific death receptor and cell type. Here we show that binding of Fas ligand to Fas activates p38 MAPK in CD8+ T cells and that activation of this pathway is required for Fas-mediated CD8+ T-cell death. Active p38 MAPK phosphorylates Bcl-xL and Bcl-2 and prevents the accumulation of these antiapoptotic molecules within the mitochondria. Consequently, a loss of mitochondrial membrane potential and the release of cytochrome c lead to the activation of caspase 9 and, subsequently, caspase 3. Therefore, the activation of p38 MAPK is a critical link between Fas and the mitochondrial death pathway and is required for the Fas-induced apoptosis of CD8+ T cells.  相似文献   

3.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

4.
Dehydroepiandrosterone-sulfate, the sulfated form of dehydroepiandrosterone, is the most abundant steroid in young adults, but gradually declines with aging. In humans, the clinical application of dehydroepiandrosterone targeting some collagen diseases, such as systemic lupus erythematosus, as an adjunctive treatment has been applied in clinical trial. Here, we report that dehydroepiandrosterone may negatively regulate the mitogen-activated protein kinase pathway in humans via a novel dual specificity protein phosphatase, DDSP (dehydroepiandrosterone-enhanced dual specificity protein phosphatase). DDSP is highly homologous to LCPTP/HePTP, a tissue-specific protein tyrosine phosphatase (PTP) which negatively regulates both ERK and p38-mitogen-activated protein kinase, and is transcribed from the PTPN7 locus by alternative splicing. Although previous reports have shown that the mRNA expression of the LCPTP/HePTP gene was inducible by extracellular signals such as T-cell antigen receptor stimulation, reverse transcribed (RT)-PCR experiments using specific sets of primers suggested that the expression of LCPTP/HePTP was constitutive while the actual inducible sequence was that of DDSP. Furthermore DDSP was widely distributed among different types of human tissues and specifically interacted with p38-mitogen-activated protein kinase. This inducible negative regulation of the p38-mitogen-activated protein kinase-dependent pathway may help to clarify the broad range of dehydroepiandrosterone actions, thereby aiding the development of new preventive or adjunctive applications for human diseases.  相似文献   

5.
6.
Gong K  Li Z  Xu M  Du J  Lv Z  Zhang Y 《The Journal of biological chemistry》2008,283(43):29028-29036
A growing body of evidence has demonstrated that p38 mitogen-activated protein kinase (MAPK) has a crucial role in various physiological and pathological processes mediated by beta(2)-adrenergic receptors (beta(2)-ARs). However, the detailed mechanism of beta(2)-ARs-induced p38 MAPK activation has not yet been fully defined. The present study demonstrates a novel kinetic model of p38 MAPK activation induced by beta(2)-ARs in human embryonic kidney 293A cells. The beta(2)-AR agonist isoproterenol induced a time-dependent biphasic phosphorylation of p38 MAPK: the early phase peaked at 10 min, and was followed by a delayed phase that appeared at 90 min and was sustained for 6 h. Interestingly, inhibition of the cAMP/protein kinase A (PKA) pathway failed to affect the early phosphorylation but abolished the delayed activation. By contrast, silencing of beta-arrestin-1 expression by small interfering RNA inhibited the early phase activation of p38 MAPK. Furthermore, the NADPH oxidase complex is a downstream target of beta-arrestin-1, as evidenced by the fact that isoproterenol-induced Rac1 activation was also suppressed by beta-arrestin-1 knockdown. In addition, early phase activation of p38 MAPK was prevented by inactivation of Rac1 and NADPH oxidase by pharmacological inhibitors, overexpression of a dominant negative mutant of Rac1, and p47(phox) knockdown by RNA interference. Of note, we demonstrated that only early activation of p38 MAPK is involved in isoproterenol-induced F-actin rearrangement. Collectively, these data suggest that the classic cAMP/PKA pathway is responsible for the delayed activation, whereas a beta-arrestin-1/Rac1/NADPH oxidase-dependent signaling is a heretofore unrecognized mechanism for beta(2)-AR-mediated early activation of p38 MAPK.  相似文献   

7.
8.
9.
Adenosine-induced acceleration of glycolysis in hearts stressed by transient ischemia is accompanied by suppression of glycogen synthesis and by increases in activity of adenosine 5'-monophosphate-activated protein kinase (AMPK). Because p38 mitogen-activated protein kinase (MAPK) may regulate glucose metabolism and may be activated downstream of AMPK, this study determined the effects of the p38 MAPK inhibitors SB202190 and SB203580 on adenosine-induced alterations in glucose utilization and AMPK activity. Studies were performed in working rat hearts perfused aerobically following stressing by transient ischemia (2 x 10-min ischemia followed by 5-min reperfusion). Phosphorylation of AMPK and p38 MAPK each were increased fourfold by adenosine, and these effects were inhibited by either SB202190 or SB203580. Neither of these inhibitors directly affected AMPK activity. Attenuation of the adenosine-induced increase in AMPK and p38 MAPK phosphorylation by SB202190 and SB203580 occurred independently of any change in tissue ATP-to-AMP ratio and did not alter glucose uptake, but it was accompanied by an increase in glycogen synthesis and glycogen content and by inhibition of glycolysis and proton production. There was a significant inverse correlation between the rate of glycogen synthesis and AMPK activity and between AMPK activity and glycogen content. These data demonstrate that AMPK is likely downstream of p38 MAPK in mediating the effects of adenosine on glucose utilization in hearts stressed by transient ischemia. The ability of p38 MAPK inhibitors to relieve the inhibition of glycogen synthesis and to inhibit glycolysis and proton production suggests that these agents may restore adenosine-induced cardioprotection in stressed hearts.  相似文献   

10.
11.
p38 mitogen-activated protein kinase (MAPK) activates a number of heat shock proteins (HSPs), including HSP27 and alpha(B)-crystallin, in response to stress. Activation of HSP27 or alpha(B)-crystallin is known to protect organs/cells by increasing the stability of actin microfilaments. Although our previous studies showed that 17beta-estradiol (E(2)) improves cardiovascular function after trauma-hemorrhage, whether the salutary effects of E(2) under those conditions are mediated via p38 MAPK remains unknown. Male rats (275-325 g body wt) were subjected to soft tissue trauma and hemorrhage (35-40 mmHg mean blood pressure for approximately 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were injected intravenously with vehicle, E(2) (1 mg/kg body wt), E(2) + the p38 MAPK inhibitor SB-203580 (2 mg/kg body wt), or SB-203580 alone, and various parameters were measured 2 h thereafter. Cardiac functions that were depressed after trauma-hemorrhage were returned to normal levels by E(2) administration, and phosphorylation of cardiac p38 MAPK, HSP27, and alpha(B)-crystallin was increased. The E(2)-mediated improvement of cardiac function and increase in p38 MAPK, HSP27, and alpha(B)-crystallin phosphorylation were abolished with coadministration of SB-203580. These results suggest that the salutary effect of E(2) on cardiac function after trauma-hemorrhage is in part mediated via upregulation of p38 MAPK and subsequent phosphorylation of HSP27 and alpha(B)-crystallin.  相似文献   

12.
Since the identification of the p38 mitogen-activated protein kinase (MAPK) as a key signal-transducing molecule in the expression of the proinflammatory cytokine tumor necrosis factor (TNF) more than 10 years ago, huge efforts have been made to develop inhibitors of p38 MAPK with the intent to modulate unwanted TNF activity in diseases such as autoimmune diseases or sepsis. However, despite some anti-inflammatory effects in animal models, no p38 MAPK inhibitor has yet demonstrated clinical efficacy in human autoimmune disorders. One possible reason for this paradox might relate to the fact that the p38 MAPK signaling cascade is involved in the functional regulation of several different cell types that all contribute to the complex pathogenesis of human autoimmune diseases. In particular, p38 MAPK has a multifaceted role in CD4 T cells that have been implicated in initiating and driving sustained inflammation in autoimmune diseases, such as rheumatoid arthritis or systemic vasculitis. Here we review recent advances in the understanding of the role of the p38 MAPK signaling cascade in CD4 T cells and the consequences that its inhibition provokes in T cell functions in vitro and in vivo. These new data suggest that p38 MAPK inhibitors may elicit several unwanted effects in human autoimmune diseases but may be useful for the treatment of allergic disorders.  相似文献   

13.
Activation of AMP-activated protein kinase (AMPK) has been recently demonstrated to be associated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-stimulated glucose transport mediated by both GLUT1 and GLUT4 transporters. However, signaling events upstream and downstream of AMPK are unknown. Here we report that 1) p38 mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase 3 (MKK3) were activated by AICAR in Clone 9 cells, which express only the GLUT1 transporters, and 2) activation of p38 was required for AICAR-stimulated glucose transport since treatment of the cells with p38 inhibitor SB203580 or overexpression of dominant negative p38 mutant inhibited glucose transport. Moreover, we found that overexpression of the constitutively active form of AMPK mutant also resulted in a significant activation of p38, and inhibition of p38 activity by SB203580 did not affect AICAR-stimulated activation of AMPK. These findings demonstrate that AICAR-stimulated activation of p38 is indeed mediated by AMPK, and the p38 MAPK cascade is downstream of AMPK in the signaling pathway of AICAR-stimulated glucose transport in Clone 9 cells.  相似文献   

14.
15.
16.
An increase in cellular levels of cyclic nucleotides activates serine/threonine-dependent kinases that lead to diverse physiological effects. Recently we reported the activation of the p38 mitogen-activated protein kinase (MAPK) pathway in neutrophils by a cGMP-dependent mechanism. In this study we demonstrated that exogenously supplied nitric oxide leads to activation of p38 MAPK in 293T fibroblasts. Phosphorylation of p38 corresponded with an increase in ATF-2-dependent gene expression. The effect of nitric oxide was mimicked by addition of 8-bromo-cGMP, indicating that activation of soluble guanylyl cyclase was involved. The importance of cGMP-dependent protein kinase in the activation of p38 MAPK by nitric oxide in 293T cells was assessed in a transfection based assay. Overexpression of cGMP-dependent protein kinase-1alpha caused phosphorylation of p38 in these cells and potentiated the effectiveness of cGMP. Overexpression of a catalytically inactive mutant form of this enzyme (T516A) blocked the ability of both nitric oxide and 8-bromo-cGMP to activate p38 as measured by both p38 phosphorylation and ATF-2 driven gene expression. Together, these data demonstrate that nitric oxide stimulates a novel pathway leading to activation of p38 MAPK that requires activation of cGMP-dependent protein kinase.  相似文献   

17.
The adhesion molecules known as selectins mediate the capture of neutrophils from the bloodstream. We have previously reported that ligation and cross-linking of L-selectin on the neutrophil surface enhances the adhesive function of beta(2)-integrins in a synergistic manner with chemotactic agonists. In this work, we examined degranulation and adhesion of neutrophils in response to cross-linking of L-selectin and addition of interleukin-8. Cross-linking of L-selectin induced priming of degranulation that was similar to that observed with the alkaloid cytochalasin B. Activation mediated by L-selectin of neutrophil shape change and adhesion through CD11b/CD18 were strongly blocked by Merck C, an imidazole-based inhibitor of p38 mitogen-activated protein kinase (MAPK), but not by a structurally similar non-binding regioisomer. Priming by L-selectin of the release of secondary, tertiary, and secretory, but not primary, granules was blocked by inhibition of p38 MAPK. Peak phosphorylation of p38 MAPK was observed within 1 min of cross-linking L-selectin, whereas phosphorylation of ERK1/2 was highest at 10 min. Phosphorylation of p38 MAPK, but not ERK1/2, was inhibited by Merck C. These data suggest that signal transduction as a result of clustering L-selectin utilizes p38 MAPK to effect neutrophil shape change, integrin activation, and the release of secondary, tertiary, and secretory granules.  相似文献   

18.
Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.  相似文献   

19.
We have investigated the ability of the mitogen-activated protein kinase (MAPK) kinase MKK6 to activate different members of the p38 subfamily of MAPKs and found that some MKK6 mutants can efficiently activate p38alpha but not p38gamma. In contrast, a constitutively active MKK6 mutant activated both p38 MAPK isoforms to similar extents. The same results were obtained upon co-expression in Xenopus oocytes and in vitro using either MKK6 immunoprecipitates from transfected cells or bacterially produced recombinant proteins. We also found that the preferential activation of p38alpha by MKK6 correlated with more efficient binding of MKK6 to p38alpha than to p38gamma. Furthermore, increasing concentrations of constitutively active MKK6 differentially activated either p38alpha alone (low MKK6 activity) or both p38alpha and p38gamma (high MKK6 activity), both in vitro and in injected oocytes. The determinants for selectivity are located at the carboxyl-terminal lobe of p38 MAPKs but do not correspond to the activation loop or common docking sequences. We also showed that different stimuli can induce different levels of endogenous MKK6 activity that correlate with differential activation of p38 MAPKs. Our results suggest that the level of MKK6 activity triggered by a given stimulus may determine the pattern of downstream p38 MAPK activation in the particular response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号