首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene II protein is required for all phases of filamentous phage DNA synthesis other than the conversion of the infecting single strand to the parental double-stranded molecule. It introduces a specific nick into the double-stranded replicative form DNA, is required for the initiation of (+) strand synthesis and is responsible for termination and ring closure of the (+) strand product. Here we show that the gene II protein also promotes minus strand synthesis later in infection. Over-expression of gene II protein can induce the conversion of all nascent single-stranded phage DNA to the double-stranded form, even in the presence of the single-stranded DNA-binding gene V protein that would normally sequester the newly synthesized single strands. We also present evidence that the gene X protein (separately translated from an initiator codon within gene II, and identical to the C-terminal one-third of the gene II protein) is a powerful inhibitor of phage-specific DNA synthesis in vivo.  相似文献   

2.
SPSF I and II are two cellular proteins which bind specifically to single-stranded DNA. SPSF I and II binding sites are found in the minimal origin of replication of BPV-1 DNA and near the P2 promoter of the cellular c-myc gene. DNA-binding properties of the two proteins to single-stranded oligonucleotides of different lengths and sequences were quantified by determination of DNA-binding constants. The binding constant of SPSF proteins to the lower strand of the BPV-1 origin was determined to be 1.5 x 10(-10) M-1. Peptide sequences derived from purified SPSF I and II revealed the identity of at least one of the SPSF proteins with the so-called HeLa Pur alpha factor. The HeLa Pur alpha factor was identified previously by virtue of its capacity to bind to purine-rich strands of the PUR element found in initiation zones of DNA replication [Bergemann, A.D., Ma,Z.-W. and Johnson, E.M. (1992) Mol. Cell. Biol. 12, 5673-5682]. Expression of the Pur cDNA confirmed the identity of the Pur alpha protein with the 42 kDa SPSF I protein. Analysis of several Pur alpha cDNA clones revealed the existence of an extended 3'-untranslated region in all Pur mRNAs.  相似文献   

3.
The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.  相似文献   

4.
Treatment of single-stranded circular phage fd DNA with Escherichia coli ω protein yields a new species which sediments 1.2 to 1.5 times faster than the untreated DNA in an alkaline medium. The infectivity of this species in spheroplast assays, after purification of the DNA by zone sedimentation in an alkaline sucrose gradient, is only slightly lower than that of untreated fd DNA. The formation of this species requires Mg(II) and is strongly dependent on salt concentration and temperature. At 37 °C, over 85% of the input DNA can be converted to this form when incubation is carried out in media containing 0.15 to 0.25 m-salt. The yield decreases with increasing temperature or decreasing salt concentration. The increase in sedimentation coefficient of fd DNA in an alkaline medium following treatment with ω is not due to protein binding, as no change was observed upon treatment of the product with phenol or Pronase. Furthermore, neither the buoyant density of this new species in neutral CsCl nor its sedimentation coefficient in a neutral medium is significantly different from the corresponding properties of untreated fd DNA. Examination by electron microscopy shows that the new form has the appearance of a knotted ring of about the same contour length as an untreated monomeric single-stranded fd DNA. The new form can be converted to full-length linear fd DNA by treatment with pancreatic DNAase I. The rate of conversion is approximately the same as that of untreated circular fd DNA to the linear form. These results show that the new form of fd DNA is a novel topological isomer: a knotted single-stranded DNA ring. It is also found that further treatment of the knotted DNA rings with ω at low ionic strength can reverse the reaction, i.e. the knotted DNA rings can be converted back to simple DNA rings indistinguishable from fd DNA from the phage. At intermediate ionic strength the two forms are interconvertible and form an equilibrium mixture. Results similar to those obtained for fd DNA have also been observed for single-stranded circular φX174 DNA. A mechanism based on the known activity of ω protein on double-stranded DNA, the secondary structure of a single-stranded circular DNA, and the experimental results described here is proposed.  相似文献   

5.
The gene for Escherichia coli rep helicase (rep protein) was subcloned in a pBR plasmid and the protein overproduced in cells transformed with the hybrid DNA. The effect of purified enzyme on strand unwinding and DNA replication was investigated by electron microscopy. The templates used were partial duplexes of viral DNA from bacteriophage fd::Tn5 and reannealed DNA from bacteriophage Mu. The experiments with the two DNA species show DNA unwinding uncoupled from replication. The single-stranded phage fd::Tn5 DNA with the inverted repeat of transposon Tn5 could be completely replicated in the presence of the E. coli enzymes rep helicase, DNA binding protein I, RNA polymerase and DNA polymerase III holoenzyme. A block in the unwinding step increases secondary initiation events in single-stranded parts of the template, as DNA polymerase III holoenzyme cannot switch across the stem structure of the transposon.  相似文献   

6.
B F Peterman  C W Wu 《Biochemistry》1978,17(18):3889-3892
Equilibrium and kinetic studies of the interaction of gene 32 protein of T4 phage with single-stranded fd DNA were performed monitoring the changes in protein fluorescence. From the fluorescence titrations, it was estimated that a monomer of gene 32 protein covered six nucleotide bases on the DNA and the lower limit for the apparent association constant was 1.9 x 10(8) M-1 with a cooperative parameter of 10(3) in 0.1 M 2-amino-2-hydroxymethyl-1,3-propanediol hydrochloride (pH 7) at 25 degrees C. When an ionic strength jump was applied to the gene 32 protein-fd DNA complex using a stopped-flow apparatus, the complex underwent a dissociation into its individual components accompanied by an increase in protein fluorescence. The kinetics of the dissociation are not consistent with a single first-order process. The data, however, can be analyzed in terms of a model in which gene 32 protein molecules release cooperatively starting from either one or both ends of a cluster of proteins bound to fd DNA. This type of dissociation of gene 32 protein from single-stranded DNA is very efficient and has interesting implications: it could provide a way to facilitate a rapid "zippering" of the two complementary DNA strands during DNA replication and genetic recombination.  相似文献   

7.
Complex formation of circular, single-stranded phage fd DNA with Escherichia coli DNA binding protein HD or phage fd gene 5 protein keeps infection of E. coli spheroplasts at the level of free phage DNA, whereas complexes of this DNA with E. coli DNA unwinding protein show a strongly reduced efficiency of transfection. Displacement of the unwinding protein by HD protein or gene 5 protein also maintains the poor adsorption of the complexes to spheroplasts. Free E. coli DNA unwinding protein and residual amounts of this protein bound to the DNA may interfere with the adsorption and the uptake of the phage genome.  相似文献   

8.
The protein product of the rep gene of Escherichia coli is required for the replication of certain bacteriophage genomes (phi X174, fd, P2) and for the normal replication of E. coli DNA. We have used a specialized transducing phage, lambda p rep+, which complements the defect of rep mutants, to identify the rep protein. The rep protein has been purified from cells infected with lambda p rep+ phage; it has a molecular weight of about 70 000 and appears similar to the protein found in normal cells. Stimulation of phi X174 replicative form DNA synthesis in vitro was observed when highly purified rep protein was supplied to a cell extract derived from phi X-infected E. coli rep cells and supplemented with replicative form DNA. The purified protein has a single-stranded DNA-dependent ATPase activity and is capable of sensitizing duplex DNA to nucleases specific for single-stranded DNA. For this reason we propose the enzyme be called DNA helicase III. We infer that the rep protein uses the energy of hydrolysis of ATP to separate the strands of duplex DNA; the E. coli DNA binding protein need not be present. The rep3 mutant appeared to make a limited amount of active rep protein.  相似文献   

9.
A structural protein of Rauscher oncovirus of about 8,000 to 10,000 daltons (p10), encoded by the gag gene, has been purified in high yield to apparent homogeneity by a simple three-step procedure. The purified protein was highly basic, with an isoelectric point of more than 9.0, and its immunological antigenicity was chiefly group specific. A distinctive property of the protein was the binding to nucleic acids. The stoichiometry of p10 binding to Rauscher virus RNA was analyzed using both 125I-labeled p10 and 3H-labeled RNA. The protein-RNA complex, cross-linked by formaldehyde, was separated from free RNA and free protein by velocity sedimentation and density gradient centrifugation. A maximum of about 140 mol of p10 was bound per mol of 35S RNA, or about one molecule of p10 per 70 nucleotides. This protein-RNA complex banded at a density of about 1.55 g/ml. The number of nucleic acid sites bound and the affinity of p10 binding differed significantly among the other polynucleotides tested. The protein bound to both RNA and DNA with a preference for single-stranded molecules. Rauscher virus RNA and single-stranded phage fd DNA contained the highest number of binding sites. Binding to fd DNA was saturated with about 30 mol of p10 per mol of fd DNA, an average of about one p10 molecule per 180 nucleotides. The apparent binding constant was 7.3 X 10(7) M(-1). The properties of the p10 place it in a category with other nucleic acid binding proteins that achieve a greater binding density on single-stranded than on double-stranded molecules and appear to act by facilitating changes in polynucleotide conformation.  相似文献   

10.
Gene V protein of bacteriophage Ff (M13, f1, fd) is a master regulator of phage DNA replication and phage mRNA translation. It exerts these two functions by binding to single-stranded viral DNA or to specific sequences in the 5' ends of its target mRNAs, respectively. To study the structure/function relationship of gene V protein, M13 gene V was inserted in a phagemid expression vector and a library of missense and nonsense mutants was constructed by random chemical mutagenesis. Phagemids encoding gene V proteins with decreased biological activities were selected and the nucleotide sequences of their gene V fragments were determined. Furthermore, the mutant proteins were characterized both with respect to their ability to inhibit the production of phagemid DNA transducing particles and their ability to repress the translation of a chimeric lacZ reporter gene whose expression is controlled by the promoter and translational initiation signals of M13 gene II. From the data obtained, it can be deduced that the mechanism by which gene V protein binds to single-stranded DNA differs from the mechanism by which it binds to its target sequence in the gene II mRNA.  相似文献   

11.
Three DNA binding proteins from Escherichia coli cells have been complexed with single-stranded phage fd DNA. Electron microscopy reveals granular substructures in the complexes formed with protein HD. In complexes of DNA unwinding protein with fd DNA both protein HD and phage-coded gene 5 protein partially displace the unwinding protein which results in the formation of structures characteristic for the DNA complexes formed with either protein HD or gene 5 protein alone. Combination of protein HD with double-stranded phage T7 DNA leads to a progressive folding and condensing of the genome. The structures observed are discussed in relation to current concepts of the packing of DNA in protein complexes.  相似文献   

12.
Control of single-strand DNA synthesis in coliphage f1 was studied with the use of mutants which are temperature sensitive in gene 2, a gene essential for phage DNA replication. Cells were infected at a restrictive temperature with such a mutant, and the DNA synthesized after a shift to permissive temperature was examined. When cells were held at 42 °C for ten or more minutes after infection, only single-stranded DNA was synthesized immediately after the shift to permissive temperature. This indicated that the accumulation of a pool of double-stranded, replicative form DNA molecules is not an absolute requirement for the synthesis of single-stranded DNA, although replicative form DNA accumulation precedes single-strand synthesis in cells infected with wild-type phage. Cells infected at restrictive temperature with the mutant phage do not replicate the infecting DNA, but do accumulate a substantial amount of gene 5 protein, a DNA-binding protein essential for single-strand synthesis. It is proposed that this accumulated gene 5 protein, by binding to the limited number of replicating DNA molecules formed following the shift to the permissive temperature, acts to prevent the synthesis of double-stranded replicative form DNA, thus causing the predominant appearance of single strands. This explanation implies an intermediate common to both single and double-stranded DNA synthesis. The kinetics of gene 5 protein synthesis indicates that it is the ratio of the gene 5 protein to replicating DNA molecules which determines whether an intermediate will synthesize double or single-stranded DNA.  相似文献   

13.
P Sen  G J Pazour  D Anderson    A Das 《Journal of bacteriology》1989,171(5):2573-2580
The VirE2 protein of Agrobacterium tumefaciens Ti plasmid pTiA6 is a single-stranded-DNA-binding protein. Density gradient centrifugation studies showed that it exists as a tetramer in solution. Monomeric VirE2 active in DNA binding could also be obtained by using a different protein isolation procedure. VirE2 was found to be thermolabile; brief incubation at 37 degrees C abolished its DNA-binding activity. It was insensitive to the sulfhydryl-specific reagent N-ethylmaleimide. Removal of the carboxy-terminal 37 residues of the 533-residue VirE2 polypeptide led to complete loss of DNA-binding activity; however, chimeric fusion proteins containing up to 125 residues of the VirE2 C terminus were inactive in DNA binding. In nuclease protection studies, VirE2 protected single-stranded DNA against degradation by DNase I. Analysis of the DNA-VirE2 complex by electron microscopy demonstrated that VirE2 coats a single-stranded DNA molecule and that the binding of VirE2 to its substrate is cooperative.  相似文献   

14.
Properties of the major DNA-binding protein found in herpes simplex virus-infected cells were investigated by using a filter binding assay and electron microscopy. Filter binding indicated that the stoichiometry of binding of the protein with single-stranded DNA is approximately 40 nucleotides per protein molecule at saturation. Strong clustering of the protein in DNA-protein complexes, indicative of cooperative binding, was seen with the electron microscope. Measurements of single-stranded fd DNA molecules saturated with protein and spread for electron microscopy by using both the aqueous and formamide spreading techniques indicated that the DNA is held in an extended configuration with a base spacing of approximately 0.13 nm per base.  相似文献   

15.
Electron microscopy was used to characterize the DNA-unwinding reaction catalysed by Escherichia coli DNA helicase I. Linear DNA with 5'-protruding strands as well as single-stranded gaps was incubated, under unwinding assay conditions, with the helicase. E. coli single-stranded-DNA-binding protein (SSB) was added to order the denatured DNA. Up to 70% of the sites of SSB-complexed DNA were observed as forks. The position of the strand-separating enzyme was indicated by a gap in the complex between fork and SSB on that arm which initially provided the binding site. The complex between DNA and helicase varied in length although in all cases it was long enough to comprise several helicase I molecules. A mutant helicase I (helicase I del29) which, unlike the wild-type enzyme, fails to show cooperative DNA-binding behaviour was found to prevent an abnormally short stretch of DNA near the fork from binding SSB. Apparently, one or very few helicase molecules would be sufficient for the opening of a DNA duplex although, typically, the fork is shifted by a tract of helicase I molecules. SSB displaces helicase I from single-stranded DNA but fails to do so from a fork or a single-strand/double-strand junction. The difference is consistent with the observation that SSB does not inhibit the unwinding reaction despite its rapid association with the separated strands. Helicase I unwinds in the 5'-3' direction of the bound strand. Observations so far indicate that the enzyme exploits the single strand at the initial DNA-binding site for orienting its action, and not the complementary, completely base-paired strand.  相似文献   

16.
DNA endonuclease activities associated with melanoma cell chromatin   总被引:1,自引:0,他引:1  
Chromatin-associated DNA endonucleases, extracted from Cloudman mouse melanoma cell nuclei, were separated on isoelectric focusing into seven fractions in two widely separated groups pH 3.4–5.4 and 7.5–9.3, each active on calf thymus DNA. All fractions in the former group, pI's 3.4, 4.4 and 5.4, produced at least one single-strand scission per molecule on circular duplex phage PM2 DNA, and transformed circular single-stranded phage fd DNA into linear strands of uniform length. In the second group there was no detectable activity against PM2 DNA, but two fractions pI's 7.5 and 8.0 were active on fd DNA as above, whereas the other two, pI's 8.5 and 9.0 transformed fd DNA into a number of different sized, discrete segments. These results indicate that, even allowing for possible enzymatic identity of some of the isoelectrically separated forms, at least three different DNA endonucleases are associated with mouse melanoma cell chromatin.  相似文献   

17.
Depending on the ionic environment the replicative complex of silkworm Bombyx mori, containing DNA polymerase alpha and primase, catalyzes on single-stranded DNA of phage M13 a NTP-dependent synthesis or elongation of preformed primers. In the presence of NTPs and dNTPs at conditions optimal for the NTP-dependent synthesis the replicative complex synthesizes on M13 DNA oligoribonucleotides of 9-11 residues, which serve as primers for polymerization of DNA. The length of RNA-primers synthesized by primase of the complex depends on concentration of dNTP but does not depend on activity of DNA polymerase alpha. During elongation of exogenic primers annealed to M13 DNA the complex is processive synthesizing DNA fragments of dozens residues without dissociation from the template. Double-stranded structures in DNA such as "hairpins" appear to be barriers for driving of the complex along the template and cause pauses in elongation. DNA-binding proteins the SSB of Escherichia coli or the p32 of phage T4 destabilize double-stranded regions in DNA and eliminate elongation pauses corresponding to these regions. The replicative complex is able to fill in single-stranded gaps in DNA completely and to perform slowly the synthesis with displacement of one of parent strands in duplexes via repeated cycles of binding to the primer-template, limited elongation and dissociation.  相似文献   

18.
The molecular structure of the single-stranded fd DNA inside its filamentous virion has been stabilized by the photochemical reaction with a psoralen derivative and examined in the electron microscope. The results support the notion that the 6389 nucleotide-long DNA molecule is folded back on itself inside the 1 μm-long protein coat. At one end of the virion, there exists a DNA hairpin region 200±50 base-pairs long. This “end hairpin” is mapped on the fd genome to the site of the replication origin. The most stable in vitro hairpin of fd DNA has been mapped previously to this same site. This unique duplex region of fd DNA may play an important role in the formation of specific protein-DNA complexes which are crucial to stages of the fd life cycle: the adsorption of the phage to the bacteria, the initiation of replication of the single-stranded DNA, and the assembly of newly synthesized DNA strands into the filamentous virions.  相似文献   

19.
A Casadevall  L A Day 《Biochemistry》1983,22(20):4831-4842
Ag+ binding and Hg2+ binding to both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) have been examined in some detail, and the results have been applied to study the structures of circular ssDNA in several filamentous viruses. It has been known for some time that Ag+ and Hg2+ bind to the bases of DNA producing characteristic large changes in absorbance and circular dichroism (CD) spectra, as well as changes in sedimentation rates. In the case of Ag+, it is known that there are three modes of binding to isolated dsDNA, referred to as types I, II, and III. Type III binding, by definition, occurs when Ag+ binds to Ag-dsDNA complexes having sites for binding types I and II extensively occupied, if not saturated. It produces CD spectra, assigned in this study, and absorbance spectra that are isosbestic with those of the Ag-dsDNA complexes present prior to its onset. In phosphate buffers binding is restricted to types I and II, whereas in borate buffers weaker type III binding can occur. Characteristics of types I, II, and III were observed for the DNAs in fd, If1, IKe, and Xf, but not for those in Pf1 and Pf3. Similarly, many of the spectral changes seen when Hg2+ binds to isolated double-stranded DNA are mimicked by Hg2+ binding to the DNAs within fd, IKe, If1, and Xf, but not for those in Pf1 and Pf3. The Ag+ and Hg2+ results indicate the presence of right-handed DNA helices in fd, If1, IKe, and Xf, with the two antiparallel strands of the covalently closed single-stranded DNAs having the bases directed toward the virion axes. For Pf1 and Pf3, Ag+ and Hg2+ binding cause large absorbance changes but only small CD changes. The very different results for Pf1 and Pf3 are consistent with the presence of inverted DNA structures (I-DNA) with the bases directed away from the structure axes, but the two structures differ from one another. Sedimentation velocity changes with Ag+ and Hg2+ binding strongly suggest structural linkages between the DNA and the surrounding protein sheath in each of the viruses.  相似文献   

20.
The major herpes simplex virus DNA-binding protein, ICP8, was purified from cells infected with the herpes simplex virus type 1 temperature-sensitive strain tsHA1. tsHA1 ICP8 bound single-stranded DNA in filter binding assays carried out at room temperature and exhibited nonrandom binding to single-stranded bacteriophage fd DNA circles as determined by electron microscopy. The filter binding assay results and the apparent nucleotide spacing of the DNA complexed with protein were identical, within experimental error, to those observed with wild-type ICP8. Thermal inactivation assays, however, showed that the DNA-binding activity of tsHA1 ICP8 was 50% inactivated at approximately 39 degrees C as compared with 45 degrees C for the wild-type protein. Both wild-type and tsHA1 ICP8 were capable of stimulating viral DNA polymerase activity at permissive temperatures. The stimulatory effect of both proteins was lost at 39 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号