首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Double-Stranded RNA in Rice   总被引:2,自引:0,他引:2  
Oryza sativa ) and wild rice (O. rufipogon) tissues. It is detected at every developmental stage, and is transmitted very efficiently to progeny via seeds (more than 98%). The dsRNA is maintained at a constant level (approximately 100 copies/cell) in almost all tissues. However, the number of copies increases about 10-fold when host cells are grown in suspension culture. Complete nucleotide sequences of cultivated rice (temperate japonica rice, cv. Nipponbare, J-dsRNA) and wild rice (W-1714, W-dsRNA) dsRNAs have been determined. Both wild and cultivated rice dsRNAs have a single long open reading frame (ORF) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase. The coding strands of both contain a site-specific discontinuity (nick) at nt 1,211 (J-dsRNA) or at nt 1,197 (W-dsRNA) from the 5′ end of their coding strand. Rice dsRNA has several unique properties and can be regarded as a novel RNA replicon. This paper discusses the origin and evolution of the rice dsRNA. Received 23 October 1998/ Accepted in revised form 15 December 1998  相似文献   

2.
We have found a linear, 16 kb, double-stranded RNA (dsRNA) in symptomless Japonica rice (Oryza sativa L.) that is not found in Indica rice (Oryza sativa L.). The dsRNA was detected in every tissue and at every developmental stage, and its copy number was approximately constant (about 20 copies/cell). Double-stranded RNA was also detected in two strains of Oryza rufipogon (an ancestor of O. sativa). Hybridization experiments indicated that the dsRNA of O. rufipogon was homologous but not identical to that of O. sativa. The sequence of about 13.2 kb of the dsRNA was determined and two open reading frames (ORFs) were found. The larger ORF (ORF B) was more than 12 351 nucleotides long and encoded more than 4 117 amino acid residues.  相似文献   

3.
Endogenous, 14 kb double-stranded RNAs (dsRNAs) have been found in two ecospecies of cultivated rice (temperate japonica rice and tropical japonica rice, Oryza sativa L.) and in wild rice (O. rufipogon, an ancestor of O. sativa). A comparison of the nucleotide and deduced amino acid sequences of the core regions of the RNA-dependent RNA polymerase domains found in these three dsRNAs suggested that these dsRNAs probably evolved independently within each host plant from a common ancestor. These dsRNAs were introduced into F1 hybrids by crossing cultivated rice and wild rice. Unusual cytoplasmic inheritance of these dsRNAs was observed in some F1 hybrids; the evolutionarily related dsRNAs were incompatible for each other, and the resident dsRNA of an egg cell from cultivated rice was excluded by the incoming dsRNA of a pollen cell from wild rice. Coexisting dsRNAs in the F1 hybrids segregated away from each other in the F2 plants. However, the total amount of these dsRNAs in the host cells remained constant (ca. 100 copies/cell). The stringent regulation of the dsRNA copy number may be responsible for their unusual inheritance.  相似文献   

4.
The recovery of transgenic rice plants expressing a number of exogenous genes was reported previously. Using immature embryo explants as the target tissue, plasmids containing both selectable and screenable marker genes were introduced into elite rice varieties via electric-discharge particle acceleration. Co-integration, copy number, expression, and inheritance of these genes were analyzed. A 100% co-integration frequency was confirmed by Southern-blot analyses of R0 plants. The majority of transgenic plants contained between one and ten copies of exogenous DNA and molecular and genetic analyses of progeny indicated that all copies in almost all R0 plants were inherited as a single dominant hemizygous locus. Co-expression of unselected genes ranged from 30–66% for gus/hmr constructs, depending on the promotor used, and up to 90% for bar/hmr constructs. The integrative structures of two unlinked transgenic loci of a rare R0 plant were analyzed in detail by Southern-blot analysis of its progeny.  相似文献   

5.
Summary We have compared copy numbers and blothybridization patterns of histone genes (H3 plus H4) between and within individuals of broad bean (Vicia faba). Copy number differences among individuals in the population of 200 individuals were as great as 27 fold, and as much as 3.2 fold among separate leaves of the same plant. Among F2 progeny from genetic crosses, up to a 5.4-fold range was seen (mean=3.5 fold), and among F1 progeny of self-pollinated plants, up to a 5.9-fold range was observed (mean=2.3 fold). Histone gene blot-hybridization patterns for EcoRI and HindIII were also variable among individuals and indicated that the genes are probably clustered in only a few chromosomal loci. The degree of variation in histone gene copy number per haploid genome (2–55 copies, or 27 fold) was similar to that found previously for ribosomal RNA genes (230–22000, or 95 fold) of V. faba. However, the two gene families change independently, since individuals with a high or low copy number for one gene can have either a high or low copy number for the other. The mechanisms(s) for rapid gene copy number change may be similar for these gene families.  相似文献   

6.
The Mu transposon of maize exists in a highly mutagenic strain called Robertson's Mutator. Plants of this strain contain 10-50 copies of the Mu element, whereas most maize strains and other plants have none. When Mutator plants are crossed to plants of the inbred line 1S2P, which does not have copies of Mu, the progeny plants have approximately the same number of Mu sequences as did their Mutator parent. Approximately one-half of these copies have segregated from their parent and one-half have arisen by transposition and are integrated into new positions in the genome. This maintenance of copy number can be accounted for by an extremely high rate of transposition of the Mu elements (10-15 transpositions per gamete per generation). When Mutator plants are self-pollinated, the progeny double their Mu copy number in the first generation, but maintain a constant number of Mu sequences with subsequent self-pollinations. Transposition of Mu and the events that lead to copy number maintenance occur very late in the development of the germ cells but before fertilization. A larger version of the Mu element transposes but is not necessary for transposition of the Mu sequences. The progeny of crosses with a Mutator plant occasionally lack Mutator activity; these strains retain copies of the Mu element, but these elements no longer transpose.  相似文献   

7.
Restriction fragment polymorphisms were used to identify and quantify the nuclear contributions from each parent to somatic hybrid plants between tomato (Lycopersicon esculentum Mill.) cv. Sub-Arctic Maxi and Solanum lycopersicoides Dun. Three single-copy clones, 2–13, 2–17, and 3–288, and a clone for the 45s ribosomal RNA, pHA2, all mapped to chromosome 2 of tomato, were used in analysis of 47 somatic hybrids. The amount of hybridizing probe for each parental band was quantified by densitometry of the autoradiograph film. Analyses with the three single-copy clones indicated that there were more than two S. lycopersicoides copies in most somatic hybrid plants. For at least one somatic hybrid there was a loss of one tomato copy. No evidence was found for more than two copies donated from tomato or loss of a copy from S. lycopersicoides. Most of the observed variation in copy number of the single-copy clones was consistent with chromosomal changes occurring in the suspension cells from which S. lycopersicoides parental protoplasts were derived.The number of copies of rDNA derived from each parent varied independently of the number of copies of single-copy clones from each parent. Changes in the copy number of rDNA occurred in both tomato and S. lycopersicoides genomes.  相似文献   

8.
We completely sequenced 13,936 nucleotides (nt) of a double-stranded RNA (dsRNA) of wild rice (W-dsRNA). A single long open reading frame (13,719 nt) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase was located in the coding strand. The identity between entire nucleotide sequence of W-dsRNA and that of the dsRNA of temperate japonica rice (J-dsRNA, 13,952 nt) was 75.5%. A site-specific discontinuity (nick) was identified at nt 1,197 from the 5' end of the coding strand of W-dsRNA. This nick is also located at nt 1,211 from the 5' end in the coding strand of J-dsRNA. The dsRNA copy number was increased more than 10-fold in pollen grains of both rice plants. This remarkable increase may be responsible for the highly efficient transmission of J-dsRNA via pollen that we already reported. J-dsRNA and W-dsRNA were also efficiently transmitted to interspecific F1 hybrids. Seed-mediated dsRNA transmission to F2 plants was also highly efficient when the maternal parent was wild rice. The efficiency of dsRNA transmission to F2 plants was reduced when the maternal parent was temperate japonica rice; however, the reduced rates in F2 plants were returned to high levels in F3 plants.  相似文献   

9.
Four isogenic strains (himAhimDdouble mutant,himAandhimDsingle mutants, and their wild type counterpart) harboringorip15A plasmid (pACYC184 or pACYC184Amp or pACYC177) show different copy numbers of that plasmid in the early stationary phase of cultivation. The copy number oforip15A plasmid increases about four times in thehimAhimDdouble (65–70 copies per cell) andhimDsingle mutant cells (50–56 copies per cell) and was almost the same inhimAmutant (17–18 copies per cell) and wild type cells (14–16 copies per cell). The results suggest that HimD can form homodimers, which are functionally competent for the regulation oforip15A plasmid copy number. Complementation experiments ofhimAhimDdouble mutant cells using plasmid carryinghimAandhimDgenes (pPLhiphimA-5) confirm the effect of integration host factor (IHF) absence on increasing the copy number oforip15A plasmid (plasmid producing IHF complemented the defect of IHF mutant). The absence of IHF (usinghimAhimDdouble mutant as host) had no effect on the copy number of the pBR322 (oripMB1) plasmid.  相似文献   

10.
Rice inflorescences were inoculated with Agrobacterium tumefaciens strain LBA4404 carrying plasmid pJD4 with application of vacuum infiltration. After co-cultivation, callus was initiated and subjected to hygromycin selection, and plants were regenerated from resistant callus lines. Based on the total number of co-cultivated inflorescences bearing flowers 1 to 3 mm in length, the average frequency for recovering independent transgenic rice plants was at least 30%. Seeds from selfed R0 plants were harvested within 6 months after initiation of the experiments. Genomic DNA blot analysis showed that genes in the T-DNA of the binary plasmid were stably integrated into the rice genome, typically at low copy number. In most, but not all, cases the transgene was transmitted to R1 progeny at a frequency characteristic for Mendelian inheritance of a single dominant trait. For selfed progeny of one two-locus insertion line, reactivation of GUS expression was observed for a single copy locus that segregated from a silenced multicopy locus. For this line and some additional plants, fluorescence in situ hybridization was used to visualize the chromosomal location of the transgene insert.  相似文献   

11.
We have found a 14 kbp double-stranded RNA (dsRNA) in many cultivars of japonica rice (Oryza sativa L.) but not in any cultivars of indica rice. This dsRNA is an RNA replicon with plasmid-like properties and is proposed to be a novel dsRNA virus, Oryza sativa endornavirus (OSV). Reciprocal crosses between the OSV-carrier japonica variety (Nipponbare) and the OSV-free indica variety (IR 26 or Kasalath) were performed to investigate whether OSV can be transmitted to F1 hybrids. When IR 26 and Nipponbare were used, efficient transmission of OSV from ova (93%) and pollen (89%) was observed. When Kasalath and Nipponbare were used, the OSV transmission efficiency to F1 progeny was 68% from ova and 20% from pollen. The transmission of OSV to F2 progeny plants was also complicated, showing non-Mendelian inheritance. These results suggest that the dsRNA replicon (OSV) is unstable in indica rice plants.  相似文献   

12.
Summary Fluorescence in situ hybridization (FISH) is a powerful tool for visualizing the chromosomal location of targeted sequences and has been applied in many areas, including karyotyping, breeding and characterization of genes introduced into the plant genome. A simple, routine and sensitive FISH procedure was developed for localizing single copy genes in rice (Oryza sativa L.) metaphase chromosomes. We used digoxygenin-labeled endogenous or T-DNA sequences as small as 5.6 kb to probe corresponding endogenous sequences or the T-DNA insert in denatured rice metaphase chromosomes prepared from root meristem tissue. The hybridized probe sequence was labeled with cy3-conjugated anti-mouse IgG and visualized using fluorescence microscopy. Single copy and multiple copy introduced T-DNA sequences, as well as endogenous sequences, were localized on the chromosomes. The FISH protocol was effectively used to sereen the chromosomal location of introduced T-DNA and number of integration loci in rice.  相似文献   

13.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

14.
This study was conducted to evaluate the effect of two different biotypes of the sweetpotato whitefly,Bemisia tabaci (Gennadius), on the induction of squash silverleaf (SSL), and to determine if double-stranded RNA (dsRNA) occurs in geographically remote populations of the two biotypes. Recently collected B-biotype whiteflies from Florida, Arizona, Mississippi, and Texas (SPW-B) all contained a 7.0 kb dsRNA molecule. Kb dsRNA molecule. Laboratory colonies of A-biotype whiteflies that were originally collected in 1981 from cotton in Arizona and California did not contain the 7.0 Kb dsRNA. When the two biotypes were compared only the SPW-B induced rapid onset, grade 5, SSL. DsRNA similar to that found in adult SPW-B was concentrated in whitefly nymphs, but host plant leaf tissue did not contain any consistent dsRNA molecules. SPW-A only induced low-grade SSL and progeny of SPW-A that were fed on pumpkin plants displaying SSL did not acquire the ability to express dsRNA or induce SSL. Our data suggest that dsRNA is not directly involved in the induction of SSL and that SSL is a host-specific response, to a feeding injury induced by B-biotype whiteflies. The origin and source of the 7.0 Kb dsRNA molecule remains enigmatic but its expression is constant in the whitefly biotype that is responsible for the induction of SSL and several other plant disorders in the U.S.  相似文献   

15.
We present a simple and rapid method for screening second-generation transgenic rice plants (T1) to identify homozygous plants. The plasmid (pfd11) used for rice transformation contains a partially deleted cytochrome c gene (cyc) for comparing with the endogenous cyc for copy number. After polymerase chain reaction (PCR) amplification of a segment of the cyc in transgenic rice DNA followed by agarose gel electrophoresis, two specific bands are obtained. The upper band represents the endogenous cyc, and the lower band represents the partially deleted cyc in the transgene. The first-generation plants (T0) that harbor a single copy of the transgene are selected based on the fact that the density of the lower band is half as dense as the upper band. Next, only plants harboring a single copy of the transgene are advanced to the second generation (T1). The same PCR procedure is used again, and homozygous T1 plants are easily identified from samples in which the intensity of the two bands is the same.  相似文献   

16.
17.
18.
In plants, SGS3 and RNA‐dependent RNA polymerase 6 (RDR6) are required to convert single‐ to double‐stranded RNA (dsRNA) in the innate RNAi‐based antiviral response and to produce both exogenous and endogenous short‐interfering RNAs. Although a role for RDR6‐catalysed RNA‐dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA‐binding protein with unexpected substrate selectivity favouring 5′‐overhang‐containing dsRNA. The conserved XS and coiled‐coil domains are responsible for RNA‐binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi‐based host immune response, is a dsRNA‐binding protein with similar specificity to SGS3. In competition‐binding experiments, V2 outcompetes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5′ overhang is required for subsequent steps in RNA‐mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs.  相似文献   

19.
20.
To investigate the effect of matrix attachment regions (MARs) on transgene expression levels and stability in cereal crops, we generated 83 independent transgenic rice callus lines containing a gusA expression cassette either as a simple expression unit, or flanked with MARs from tobacco (Rb7) or yeast (ARS1). Transgenic rice plants were regenerated from these callus lines and analysed at the structural and expression levels over two generations. In the first generation (T0), both Rb7 and ARS1 MARs significantly increased transgene expression levels. In the populations of plants containing MARs, we observed a significant reduction in the number of non-expressing lines compared to the population of plants without MARs. However, variation in β-glucuronidase (GUS) expression levels between independent lines was similar both in the presence and absence of flanking MARs. In the presence of MARs, GUS activity increased in proportion to transgene copy number up to 20 copies, but was generally reduced in lines carrying a higher copy number. In the population of plants without MARs, there was no correlation between expression level and transgene copy number. In the second generation (T1), transgene expression levels were significantly correlated with those of the T0 parents. The Rb7 MARs significantly improved the stability of transgene expression levels over two generations, and therefore appear to offer protection against transgene silencing. Our study shows that the exploitation of MARs may be an important strategy for stabilising transgene expression levels in genetically engineered cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号