首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Continental shelf island systems, created by rising sea levels, provide a premier setting for studying the effects of geographical isolation on non-adaptive radiation and allopatric speciation brought about by genetic drift. The Aegean Archipelago forms a highly fragmented complex of mostly continental shelf islands that have become disconnected from each other and the mainland in relatively recent geological times (ca <5.2Ma). These ecologically fairly homogenous islands thus provide a suitable biogeographic context for assessing the relative influences of past range fragmentation, colonization, gene flow and drift on taxon diversification. Indeed, recent molecular biogeographic studies on the Aegean Nigella arvensis complex, combining phylogenetic, phylogeographic and population level approaches, exemplify the importance of allopatry and genetic drift coupled with restricted gene flow in driving plant speciation in this continental archipelago at different temporal and spatial scales. While the recent (Late Pleistocene) radiation of Aegean Nigella, as well as possible instances of incipient speciation (in the Cyclades), is shown to be strongly conditioned by (palaeo)geographic factors (including changes in sea level), shifts in breeding system (selfing) and associated isolating mechanisms have also contributed to this radiation. By contrast, founder event speciation has probably played only a minor role, perhaps reflecting a migratory situation typical for continental archipelagos characterized by niche pre-emption because of a long established resident flora. Overall, surveys of neutral molecular markers in Aegean Nigella have so far revealed population genetic processes that conform remarkably well to predictions raised by genetic drift theory. The challenge is now to gain more direct insights into the relative importance of the role of genetic drift, as opposed to natural selection, in the phenotypic and reproductive divergence among these Aegean plant species.  相似文献   

2.
Comparative phylogeographical studies in island archipelagos can reveal lineage-specific differential responses to the geological and climatic history. We analysed patterns of genetic diversity in six codistributed lineages of darkling beetles (Tenebrionidae) in the central Aegean archipelago which differ in wing development and habitat preferences. A total of 600 specimens from 30 islands and eight adjacent mainland regions were sequenced for mitochondrial cytochrome oxidase I and nuclear Muscular protein 20. Individual gene genealogies were assessed for the presence of groups that obey an independent coalescent process using a mixed Yule coalescent model. The six focal taxa differed greatly in the number of coalescent groups and depth of lineage subdivision, which was closely mirrored by the degree of geographical structuring. The most severe subdivision at both mitochondrial DNA and nuclear DNA level was found in flightless lineages associated with presumed stable compact-soil habitats (phrygana, maquis), in contrast to sand-obligate lineages inhabiting ephemeral coastal areas that displayed greater homogeneity across the archipelago. A winged lineage, although associated with stable habitats, showed no significant phylogenetic or geographical structuring. Patterns of nucleotide diversity and local genetic differentiation, as measured using ΦST and hierarchical amova , were consistent with high levels of ongoing gene flow in the winged taxon; frequent local extinction and island recolonisation for flightless sand-obligate taxa; and very low gene flow and geographical structure largely defined by the palaeogeographical history of the region in flightless compact-soil taxa. These results show that differences in dispersal rate, mediated by habitat persistence, greatly influence the levels of phylogeographical subdivision in lineages that are otherwise subjected to the same geological events and palaeoclimatic changes.  相似文献   

3.
Both demographic history and dispersal mechanisms influence the apportionment of genetic diversity among plant populations across geographical regions. In this study, phylogeography and population structure of wild banana, Musa balbisiana, one of the progenitors of cultivated bananas and plantains in China were investigated by an analysis of genetic diversity of simple sequence repeat (SSR) fingerprint markers and cpDNA PCR-RFLP. A chloroplast DNA (cpDNA) genealogy of 21 haplotypes identified two major clades, which correspond to two geographical regions separated by the Beijiang and Xijiang rivers, suggesting a history of vicariance. Significant genetic differentiation was detected among populations with cpDNA markers, a result consistent with limited seed dispersal in wild banana mediated by foraging of rodents. Nuclear SSR data also revealed significant geographical structuring in banana populations. In western China, however, there was no detected phylogeograpahical pattern, possibly due to frequent pollen flow via fruit bats. In contrast, populations east of the Beijiang River and the population of Hainan Island, where long-range soaring pollinators are absent, are genetically distinct. Colonization-extinction processes may have influenced the evolution of Musa populations, which have a metapopulation structure and are connected by migrating individuals. Effective gene flow via pollen, estimated from the nuclear SSR data, is 3.65 times greater than gene flow via seed, estimated from cpDNA data. Chloroplast and nuclear DNAs provide different insights into phylogeographical patterns of wild banana populations and, taken together, can inform conservation practices.  相似文献   

4.
Determining accurate phylogenetic relationships among the members of the woody Sonchus alliance presents challenges because of an insufficient level of molecular variation and the convergent evolution of similar morphological traits in island settings. To obtain a better resolved phylogeny and to test the potential role of hybridization and introgression, we sequenced all members of the alliance with multiple populations for the ITS of nrDNA and over 4000 base pairs of coding and noncoding regions of cpDNA. The cpDNA phylogeny is not well resolved in the core members of the alliance (i.e., subg. Dendrosonchus and genus Taeckholmia), but like the ITS tree, it has identified basal lineages of monotypic genera. The cpDNA data set was not significantly different from that of ITS, and subsequent combined analysis provided a better resolved and supported phylogeny within the alliance. The combined ML tree identified the same basal lineages, suggested nonmonophyly of Dendrosonchus and Taeckholmia, and did not support either Boulos' or Aldridge's infrasubgeneric classification system. Assessment of the role of hybridization and introgression was limited due to poor resolution in the cpDNA phylogeny. The combined analysis supports a Gran Canaria origin for the alliance and two subsequent long distance dispersal events to Madeira and Cape Verde islands.  相似文献   

5.
The dating of recent events in the history of organisms needs divergence rates based on molecular fingerprint markers. Here, we used amplified fragment length polymorphisms (AFLPs) of three distantly related alpine plant species co-occurring in the Spanish Sierra Nevada, the Pyrenees and the southwestern Alps/Massif Central to establish divergence rates. Within each of these species ( Gentiana alpina , Kernera saxatilis and Silene rupestris ), we found that the degree of AFLP divergence ( D N72) between mountain phylogroups was significantly correlated with their time of divergence (as inferred from palaeoclimatic/palynological data), indicating constant AFLP divergence rates. As these rates did not differ significantly among species, a regression analysis based on the pooled data was utilized to generate a general AFLP rate. The application of this latter rate to AFLP data from other herbaceous plant species ( Minuartia biflora : Schönswetter et al . 2006 ; Nigella degenii : Comes et al . 2008 ) resulted in a plausible timing of the recolonization of the Svalbard Islands and the separation of populations from the Alps and Scandinavia ( Minuartia ), and of island population separation in the Aegean Archipelago ( Nigella ). Furthermore, the AFLP mutation rate obtained in our study is of the same magnitude as AFLP mutation rates published previously. The temporal limits of our AFLP rate, which is based on intraspecific vicariance events at shallow (i.e. late glacial/Early Holocene) time scales, remains to be tested.  相似文献   

6.
Aim  To infer the temporal course and geographical mode of speciation in Mediterranean/Southwest Asian Nigella s. lat.
Location  Mediterranean Basin, Aegean archipelago.
Methods  Phylogenies for Nigella L. and Garidella L. (=  Nigella s. lat.) were obtained from maximum-likelihood analyses of internal transcribed spacer (ITS) sequences. Diversification through time was analysed by log lineages-through-time (LTT) plots and survival analyses. Relative node age estimates were regressed against the degree of sympatry between sister clades to infer the predominant mode of geographical speciation in Nigella s. lat.
Results  The Late Pleistocene radiation of the Nigella arvensis complex in the Aegean region caused a significant departure from a stochastic speciation/extinction process of diversification during the evolution of Nigella s. lat., a lineage of (at least) Late Miocene origin. Speciation within Nigella s. lat. predominantly took place in allopatry.
Main conclusions  No significant effect on diversification rate was found regarding the establishment of a Mediterranean-type climate, or the onset of the Quaternary climatic oscillations. Rather, the accelerated rate of speciation in the N. arvensis complex is plausibly related to increased opportunities for allopatric speciation afforded by the (palaeo)geographical complexity of the Aegean archipelago combined with Late Pleistocene changes in climate and sea level. The evolution of self-pollination and associated changes in habitat preference and flowering time further augmented speciation and niche differentiation within the complex, but these changes did not act as the primary promoters of the radiation process.  相似文献   

7.
Population genetic studies of plant species can contribute to understanding the evolutionary history of the Brazilian Cerrado, a highly threatened hotspot and the richest tropical savanna in the world. Therefore, this study aimed at investigating the diversity and genetic structure of Byrsonima coccolobifolia (Malpighiaceae), one of the most common tree species in the Brazilian Cerrado, focusing mainly on the central area of the biome. This is a bird-dispersed species, and studies targeting species with this seed dispersal syndrome are scarce. First, we performed a careful screening of cpDNA markers to identify regions suitable for intraspecific genetic studies, and then we investigated the diversity and genetic structure in ten populations of B. coccolobifolia. The cpDNA regions selected (trnS-trnG and trnH-trnK) revealed considerable divergence among populations and a striking geographical structure, separating populations in two groups, east and west. Although seed dispersal by birds is expected to reach long distances, our results strongly corroborate studies targeting trees with limited seed dispersal. This suggests that historical fragmentation of Cerrado (possibly during cold and dry periods of the Quaternary) might have limited long distance dispersal events after climate amelioration even in bird-dispersed species, especially while Cerrado was expanding but still fragmented.  相似文献   

8.
Under the isolation-by-distance model, the strength of spatial genetic structure (SGS) depends on seed and pollen dispersal and genetic drift, which in turn depends on local demographic structure. SGS can also be influenced by historical events such as admixture of differentiated gene pools. We analysed the fine-scale SGS in six populations of a pioneer tree species endemic to Central Africa, Aucoumea klaineana. To infer the impacts of limited gene dispersal, population history and habitat fragmentation on isolation by distance, we followed a stepwise approach consisting of a Bayesian clustering method to detect differentiated gene pools followed by the analysis of kinship-distance curves. Interestingly, despite considerable variation in density, the five populations situated under continuous forest cover displayed very similar extent of SGS. This is likely due to an increase in dispersal distance with decreased tree density. Admixture between two gene pools was detected in one of these five populations creating a distinctive pattern of SGS. In the last population sampled in open habitat, the genetic diversity was in the same range as in the other populations despite a recent habitat fragmentation. This result may due to the increase of gene dispersal compensating the effect of the disturbance as suggested by the reduced extent of SGS estimated in this population. Thus, in A. klaineana, the balance between drift and dispersal may facilitate the maintenance of genetic diversity. Finally, from the strength of the SGS and population density, an indirect estimate of gene dispersal distances was obtained for one site: the quadratic mean parent-offspring distance, sigma(g), ranged between 210 m and 570 m.  相似文献   

9.
The present investigation examines the role of genetic constraints in shaping evolutionary change in the Nigella arvensis species complex. Parent-offspring analyses of two populations of N. degenii demonstrated high heritabilities for a wide range of vegetative and floral characters, indicating a great potential for further adaptive change. The populations differed significantly in the heritability for leaf length and in the genetic correlation between plant height and peduncle length, suggesting that these populations would respond differently to identical selection pressures. There was a tendency for large-scale diversity to extrapolate within-population variability, at least for the floral trait associations, while genetic data from a segregating F3 hybrid population indicated stability in the correlation structure across two environments. On the basis of hybrid data, I propose that inbreeding effects and pleiotropic relationships with leaf size may have facilitated the reduction in floral morphology accompanying the evolution of autogamy in related taxa.  相似文献   

10.
The population genetics and phylogeography of Trema dielsiana in Taiwan were inferred from genetic diversity at the nonsymbiotic hemoglobin gene and the trnL-trnF intergenic spacer of cpDNA. Reduced genetic variation was detected in these two unlinked genes. The gene genealogy of the hemoglobin locus recovered two lineages corresponding to the western and eastern regions of Taiwan. This pattern is compatible with a past fragmentation event revealed by phylogeographical analyses. To distinguish between selective departures from neutrality (i.e., heterogeneous processes) and demographic (homogeneous) processes, Hahn et al.'s heterogeneity test was conducted on the hemoglobin gene. Lack of significant differences in Tajima's D statistics between synonymous and nonsynonymous mutations indicates that homogeneous processes may have played a key role in governing the evolution of the functional locus. Significantly negative Tajima's D estimates for both overall exons and introns of the hemoglobin gene as well as for the cpDNA intergenic spacer support a phylogeographical hypothesis of range expansion after genetic bottlenecks. High level of genetic variation and a negative Tajima's D statistic suggests a possible northern refugium that may have harbored populations during the glacial maximum.  相似文献   

11.
Dispersal and migration are important processes affecting the evolutionary history and genetics of species. Here we investigate post-glacial migration and gene flow in Trillium grandiflorum (Melanthiaceae), a wide-ranging, forest herb from eastern North America. Using phylogeographic approaches, we examined cpDNA and allozyme diversity in 35 populations of T. grandiflorum sampled from throughout the geographic range of the species. Nested clade analysis (NCA) of cpDNA haplotypes indicated that T. grandiflorum likely survived in two refugia in the southeastern US during the last glaciation and that long-distance dispersal characterized the post-glacial recolonization of northern areas. There was no evidence for reduced allozyme diversity in populations from glaciated compared to ice-free regions, probably because of the greater abundance and larger effective size of populations in the north. An analysis of isolation-by-distance based on the allozyme data suggested a pattern of population differentiation consistent with restricted gene flow. Notwithstanding the significance of rare seed dispersal events for migration, a comparison of allozyme and cpDNA genetic structure indicates that pollen flow between populations is more likely than seed dispersal. These results for T. grandiflorum represent the first phylogeographic analysis of a temperate woodland herb in eastern North America and support the importance of occasional long-distance dispersal events in the post-glacial migration of plants.  相似文献   

12.
Liu JX  Gao TX  Wu SF  Zhang YP 《Molecular ecology》2007,16(2):275-288
The Northwestern Pacific has a unique tectonic and geographical history with several marginal seas separating Asia from the Pacific Ocean. During low sea level periods of Pleistocene glaciations, populations might have been isolated in three marginal seas: the Sea of Japan, East China Sea and South China Sea. Following postglacial sea level rise, we would expect the populations isolated in the three regions to have been homogenized by high dispersal potential. To assess these hypotheses, we explore the intraspecific phylogeographical patterns in redlip mullet, Chelon haematocheilus. Fragments of 435 bp at the 5' end of mitochondrial DNA control region were sequenced for 272 individuals from nine localities over most of the species' range. Three distinct lineages were detected, which might have diverged in the three marginal seas during Pleistocene low sea levels. Contrary to homogenization expectation, there were strong differences in the geographical distribution of the three lineages. Analyses of molecular variance and the population statistic Phi(ST) also revealed significant genetic structure among populations of the three marginal seas. These results indicate that gene flow in Chelon haematocheilus is far more restricted spatially than predicted by the potential dispersal capabilities of this species. The lack of phylogeographical structure in East China Sea may reflect a recent range expansion after the last glacial maximum and insufficient time to attain migration-drift equilibrium.  相似文献   

13.
Zhang X  Shi MM  Shen DW  Chen XY 《PloS one》2012,7(6):e39146
Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity.  相似文献   

14.
Species whose geographical distribution encompasses both mainland and island populations provide an ideal system for examining isolation and genetic divergence. In this study, paternally transmitted chloroplast DNA (cpDNA) and maternally transmitted mitochondrial DNA (mtDNA) were used to estimate population structure and phylogeography of Pinus luchuensis, a species found in eastern China (ssp. hwangshanensis), Taiwan (ssp. taiwanensis), and the Ryukyu Archipelago (ssp. luchuensis). Gene genealogies of both mtDNA and cpDNA reveal two major lineages. Molecular dating indicates that these lineages diverged before the colonization of P. luchuensis subspecies in Taiwan and the Ryukyu Archipelago. Both mtDNA and cpDNA show a lack of correspondence between molecular phylogeny and subspecies designation. Phylogeographical analysis suggests that paraphyly of the subspecies is the result of recent divergence rather than secondary contacts. In spite of the short divergence history of P. luchuensis on islands, the island populations show the same degree of genetic divergence as mainland populations. Low levels of genetic diversity in the mainland ssp. hwangshanensis suggest demographic bottlenecks. In contrast, the high heterogeneity of genetic composition for island populations is likely to be associated with a history of multiple colonization from the mainland. The spatial apportionment of organelle DNA polymorphisms is consistent with a pattern of stepwise colonization on island populations.  相似文献   

15.
Theoretical and empirical studies suggest that geographical isolation and extinction–recolonization dynamics are two factors causing strong genetic structure in metapopulations, but their consequences in species with high dispersal abilities have not been tested at large scales. Here, we investigated the effect of population age structure and isolation by distance in the patterns of genetic diversity in a wind‐pollinated, zoochorous tree (Olea europaea subsp. guanchica) sporadically affected by volcanic events across the Canarian archipelago. Genetic variation was assessed at six nuclear microsatellites (nDNA) and six chloroplast fragments (cpDNA) in nine subpopulations sampled on four oceanic islands. Subpopulations occurring on more recent substrates were more differentiated than those on older substrates, but within‐subpopulation genetic diversity was not significantly different between age groups for any type of marker. Isolation‐by‐distance differentiation was observed for nDNA but not for cpDNA, in agreement with other metapopulation studies. Contrary to the general trend for island systems, between‐island differentiation was extremely low, and lower than differentiation between subpopulations on the same island. The pollen‐to‐seed ratio was close to one, two orders of magnitude lower than the average estimated for other wind‐pollinated, animal‐dispersed plants. Our results showed that population turnover and geographical isolation increased genetic differentiation relative to an island model at equilibrium, but overall genetic structure was unexpectedly weak for a species distributed among islands. This empirical study shows that extensive gene flow, particularly mediated by seeds, can ameliorate population subdivision resulting from extinction–recolonization dynamics and isolation by distance.  相似文献   

16.
Historical events, habitat preferences, and geographic barriers might result in distinct genetic patterns in insular versus mainland populations. Comparison between these two biogeographic systems provides an opportunity to investigate the relative role of isolation in phylogeographic patterns and to elucidate the importance of evolution and demographic history in population structure. Herein, we use a genotype‐by‐sequencing approach (GBS) to explore population structure within three species of mastiff bats (Molossus molossus, M. coibensis, and M. milleri), which represent different ecological histories and geographical distributions in the genus. We tested the hypotheses that oceanic straits serve as barriers to dispersal in Caribbean bats and that isolated island populations are more likely to experience genetic drift and bottlenecks in comparison with highly connected ones, thus leading to different phylogeographic patterns. We show that population structures vary according to general habitat preferences, levels of population isolation, and historical fluctuations in climate. In our dataset, mainland geographic barriers played only a small role in isolation of lineages. However, oceanic straits posed a partial barrier to the dispersal for some populations within some species (M. milleri), but do not seem to disrupt gene flow in others (M. molossus). Lineages on distant islands undergo genetic bottlenecks more frequently than island lineages closer to the mainland, which have a greater exchange of haplotypes.  相似文献   

17.
Recent molecular studies have indicated that phylogeographical history of Japanese biota is likely shaped by geohistory along with biological events, such as distribution shifts, isolation, and divergence of populations. However, the genetic structure and phylogeographical history of terrestrial Annelida species, including leech species, are poorly understood. Therefore, we aimed to understand the genetic structure and phylogeographical history across the natural range of Haemadipsa japonica, a sanguivorous land leech species endemic to Japan, by using nine polymorphic nuclear microsatellites (nSSR) and cytochrome oxidase subunit one (COI) sequences of mitochondrial DNA (mtDNA). Analyses using nSSR revealed that H. japonica exhibited a stronger regional genetic differentiation among populations (G'ST = 0.77) than other animal species, probably because of the low mobility of land leech. Analyses using mtDNA indicated that H. japonica exhibited two distinct lineages (A and B), which were estimated to have diverged in the middle Pleistocene and probably because of range fragmentation resulting from climatic change and glacial and interglacial cycles. Lineage A was widely distributed across Japan, and lineage B was found in southwestern Japan. Analyses using nSSR revealed that lineage A was roughly divided into two population groups (i.e., northeastern and southwestern Japan); these analyses also revealed a gradual decrease in genetic diversity with increasing latitude in lineage A and a strong genetic drift in populations of northeastern Japan. Combined with the largely unresolved shallow polytomies from the mtDNA phylogeny, these results implied that lineage A may have undergone a rapid northward migration, probably during the Holocene. Then, the regional genetic structure with local unique gene pools may have been formed within each lineage because of the low mobility of this leech species.  相似文献   

18.
The phylogeographical patterns and population genetic structures of Varicorhinus barbatulus in Taiwan were investigated based on genetic diversity of 34 allozyme loci and nucleotide sequences of 3' end of the cytochrome b gene, tRNA genes, D-loop control region, and the 5' end of the 12S rRNA of mtDNA. Allozyme and mtDNA analyses revealing evident geographical structuring suggest limited gene flow between populations (F(ST)=0.511 and 0.791, respectively). Low genetic variability within populations (P=5.56%; He=0.018) based on allozymes and significantly negative Tajima's D statistics based on mtDNA suggest that most populations in Taiwan may have originated from a small number of founders followed by demographic expansion. The gene genealogy of mtDNA identified six lineages corresponding to major drainages that were separated by the geological barriers due to vicariant events. A minimum spanning network based on nucleotide substitutions reflects divergence from populations of the Miao-li Plateau to northern and southern regions of the island. In contrast to a previous hypothesis that suggests an early invasion to eastern part of Taiwan prior to the lifting of central mountain range some one million years ago, the mtDNA genealogy and molecular dating reveal very recent colonization of the eastern population. Nested clade analyses revealing significant associations between genetic structure and geographical division identify past fragmentation and range expansion as major phylogeographical events that shaped the geographical distribution of this species in Taiwan.  相似文献   

19.
Four hundred and four individuals belonging to the species Olea europaea were characterised using mitochondrial DNA (mtDNA) RFLPs. Twelve mitotypes were distinguished. The combination of mtDNA information with cpDNA polymorphism (characterised in a previous study) led us to recognise 20 cytoplasmic lineages of which seven were found in the Mediterranean area (oleasters, cultivars and O. e. subsp. maroccana). In the olive complex, strong cytoplasm genetic differentiation was revealed ( F(st) = 0.73). Very strong linkage disequilibrium between cpDNA and mtDNA polymorphisms was observed, particularly in the Mediterranean subspecies europaea. This high congruence between genetic structure based on cpDNA or mtDNA sustains a low level of recurrent mutation in both organelle DNAs and, thus, the polymorphisms used in this study were pertinent to reconstruct olive phylogeography. In the Mediterranean area, genetic drift due to population regression during Quaternary glaciations, and founder effects associated with the postglacial seed dissemination, have probably contributed to the existence of a high genetic linkage disequilibrium between cpDNA and mtDNA polymorphisms. Thus, four Mediterranean cytoplasmic lineages, clearly distinguished both by cpDNA and mtDNA polymorphisms, most likely reflect four distinct relic populations during Quaternary glaciations. Finally, O. e. subsp. maroccana from South Morocco, which also displayed specific cytoplasmic lineages, should be considered as another relic Mediterranean population.  相似文献   

20.
The phylogeography of the lacertid lizard Gallotia atlantica from the small volcanic island of Lanzarote (Canary Islands) was analysed based on 1075 bp of mitochondrial DNA (mtDNA) sequence (partial cytochrome b and ND2) for 157 individuals from 27 sites (including three sites from neighbouring islets). Levels of sequence divergence were generally low, with the most distant haplotypes separated by only 14 mutational steps. MtDNA divergence appears to coincide with formation of the middle Pleistocene lowland that united formerly separate ancient islands to form the current island of Lanzarote, allowing rejection of a two-island model of phylogeographical structure. There was evidence of large-scale population expansion after island unification, consistent with the colonization of new areas. A nested clade phylogeographical analysis (NCPA) revealed significant phylogeographical structuring. Two-step and higher-level clades each had disjunct distributions, being found to the east and west of a common area with a north-south orientation that extends between coasts in the centre-east of the island (El Jable). Other clades were almost entirely restricted to the El Jable region alone. Bayesian Markov chain Monte Carlo analyses were used to separate ongoing gene flow from historical associations. These supported the NCPA by indicating recent (75,000-150,000 years ago) east-west vicariance across the El Jable region. Lava flows covered El Jable and other parts of the central lowland at this time and likely led to population extinctions and temporary dispersal barriers, although present-day evidence suggests some populations would have survived in small refugia. Expansion of the latter appears to explain the presence of a clade located between the eastern and western components of the disjunct clades. Direct relationships between mtDNA lineages and morphology were not found, although one of two morphological forms on the island has a disjunct distribution that is broadly concordant with east-west components of the phylogeographical pattern. This work demonstrates how recent volcanic activity can cause population fragmentation and thus shape genetic diversity on microgeographical scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号