首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Summary Temperature-sensitive nitrogen fixation mutants of Azotobacter vinelandii were obtained by nitrosoguanidine mutagenesis and penicillin selection. The mutants were unable to grow on N2 at 39° but grew normally at 30° on N2 and at both temperatures in the presence of metabolizable nitrogen compounds. Growth experiments and assays of whole cells for nitrogenase activity separated the mutants into two classes: 1. mutants in which the nitrogenase activity present in cells grown at 30° was unaffected by a shift to 39°, and 2. mutants which lost their nitrogen fixation activity after such a temperature shift. Assays of cell-free extracts of the second class of mutants showed that in all cases tested the enzymatic activity of the nitrogenase complex itself was not affected by the mutation. These mutants might therefore contain some other temperature-sensitive proteins specifically involved in nitrogen fixation.  相似文献   

2.
3.
The levels of the adenine nucleotides, pyridine nucleotides and the kinetical parameters of the enzymes of the Entner-Doudoroff pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) were determined in Azotobacter vinelandii cells, grown under O2- or N2-limiting conditions. It was concluced that the levels of both the adenine nucleotides and pyridine nucleotides do not limit the rate of sucrose oxidation. Experiments with radioactive pyruvate and sucrose show that the rate of sucrose oxidation of Azotobacter cells is associated with an increase in the rate of sucrose uptake. The sites of oxidative phosphorylation and the composition of the respiratory membranes with respect to cytochromes c4 + c5, b and d differ in cells growth either O2- or N2-limited. It was possible to show that the respiration protection of the nitrogen-fixing system in Azotobacter is mainly independent of the oxidation capacity of the cells. The oxidation capacity intrinsically depends on the type of substrate and can be partly adapted. The maximum activity of the nitrogenase in Azotobacter depends on the type of substrate oxidized. Although the level of energy charge is somewhat dependent on the type of substrate used, no obvious relation can be derived between changes in energy charge and nitrogenase activity. An alternative proposal is given.  相似文献   

4.
5.
6.
Isolation of ntrA-like mutants of Azotobacter vinelandii.   总被引:3,自引:3,他引:3       下载免费PDF全文
A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants.  相似文献   

7.
Segura D  Vargas E  Espín G 《Gene》2000,260(1-2):113-120
Azotobacter vinelandii is proposed to contain a single β-ketothiolase activity participating in the formation of acetoacetyl-CoA, a precursor for poly-β-hydroxybutyrate (PHB) synthesis, and in β-oxidation (Manchak, J., Page, W.J., 1994. Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140, 953–963). We designed a degenerate oligonucleotide from a highly conserved region among bacterial β-ketothiolases and used it to identify bktA, a gene with a deduced protein product with a high similarity to β-ketothiolases. Immediately downstream of bktA, we identified a gene called hbdH, which encodes a protein exhibiting similarity to β-hydroxyacyl-CoA and β-hydroxybutyryl-CoA dehydrogenases. Two regions with homology to bktA were also observed. One of these was cloned and allowed the identification of the phbA gene, encoding a second β-ketothiolase. Strains EV132, EV133, and GM1 carrying bktA, hbdH and phbA mutations, respectively, as well as strain EG1 carrying both bktA and phbA mutations, were constructed. The hbdH mutation had no effect on β-hydroxybutyryl-CoA dehydrogenase activity or on fatty acid assimilation. The bktA mutation had no effect on β-ketothiolase activity, PHB synthesis or fatty acid assimilation, whereas the phbA mutation significantly reduced β-ketothiolase activity and PHB accumulation, showing that this is the β-ketothiolase involved in PHB biosynthesis. Strain EG1 was found to grow under β-oxidation conditions and to possess β-ketothiolase activity. Taken together, these results demonstrate the presence of three genes coding for β-ketothiolases in A. vinelandii.  相似文献   

8.
Nif- mutants of Azotobacter vinelandii defective in dinitrogenase activity synthesized iron-molybdenum cofactor (FeMo-co) and accumulated it in two protein-bound forms: inactive dinitrogenase and a possible intermediate involved in the FeMo-co biosynthetic pathway. FeMo-co from both these proteins could activate apo-dinitrogenase from FeMo-co-deficient mutants.  相似文献   

9.
Azotobacter vinelandii was found to form novel lipid compounds when encystment was initiated by 0.2% beta-hydroxybutyrate. An examination of these compounds led to the isolation and characterization of 5-n-heneicosylresorcinol, 5-n-tricosylresorcinol, and their galactoside derivatives.  相似文献   

10.
A number of chlorate-resistant mutants were selected, and one of these, clr68-5, was studied in detail. This mutant cannot utilize nitrate in vivo to overcome the effect of nonmetabolizable repressors of nitrogenase. The reason for this inability was that strain clr68-5 lacked nitrate reductase. Nitrate inhibited the activity of nitrogenase but did not act as a corepressor of nitrogenase in strain clr68-5 as it does in the wild type. Ammonia seemed to act as corepressor of nitrogenase in both strains.  相似文献   

11.
Lipid metabolism during encystment of Azotobacter vinelandii.   总被引:2,自引:2,他引:2       下载免费PDF全文
The formation of cysts by Azotobacter vinelandii involves the synthesis of lipids as major metabolic products. Cells which encyst at low levels in aging glucose cultures undergo the same pattern of lipid synthesis as cells which undergo reasonably synchronous encystment in beta-hydroxybutyrate or n-butanol. The accumulation of poly-beta-hydroxybutyrate (PHB) precedes the synthesis of 5-n-heneicosylresorcinol and 5-n-tricosylresorcinol (AR1), which is then followed in about 6 h by the synthesis of the 5-n-alkylresorcinol galactosides (AR2). In the mature cyst, PHB, AR1, and AR2 account for 8, 5.6, and 4.5%, respectively, of the dry weight. Phospholipid formation levels off 4 h postinduction, which coincides with the final cell division, but fatty acids synthesis continues at a very low level throughout encystment, suggesting some turnover of fatty acid. Distribution studies show that AR1 and AR2 are found in roughly equal amounts in the exine and central body of the cysts, with only trace amounts recovered from the intine. Studies of cysts labeled during encystment with [14C]beta-hydroxybutyrate or during vegetative growth with [14C]glucose suggest that the exine structure is synthesized during encystment, but that the intine is composed largely of vegetative cell components.  相似文献   

12.
Mutants of Azotobacter vinelandii ATCC 12837 were isolated which could fix N2 in the presence of high tungsten concentrations. The most studied of these mutants (WD2) grew well in N-free modified Burk broth containing 10 mM W, whereas the wild type would not grow in this medium. WD2 would also grow in Burk N-free broth at about the same rate as the wild type. WD2 in broth containing W exhibited 22% of the whole cell acetylene reduction activity of the wild type in broth containing Mo and showed a lowered affinity for acetylene. Two-dimensional gel electrophoresis experiments showed that N2-fixing cells of WD2 from broth containing W or Mo did not produce significant amounts of component I of native nitrogenase protein. Electron spin resonance spectra of whole cells and cell-free extracts of WD2 from broth containing W lacked any trace of the g = 3.6 resonance associated with FeMoCo.  相似文献   

13.
In the facultative anaerobe Klebsiella pneumoniae 17 nitrogen fixation-specific genes (nif genes) have been identified. Homologs to 12 of these genes have now been isolated from the aerobic diazotroph Azotobacter vinelandii. Comparative studies have indicated that these diverse microorganisms share striking similarities in the genetic organization of their nif genes and in the primary structure of their individual nif gene products. In this study the complete nucleotide sequence of the nifUSV gene clusters from both K. pneumoniae and A. vinelandii were determined. These genes are identically organized on their respective genomes, and the individual genes and their products exhibit a high degree of interspecies sequence homology.  相似文献   

14.
Cytochrome-c-deficient mutants of Azotobacter vinelandii have been isolated following mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. These mutants grow well under nitrogen-fixing conditions and studies of the physiology and energy conservation efficiency show no apparent differences from those of the parent strain. Under oxygen-limited growth conditions, the growth rate of the cytochrome-c-deficient mutant was slightly slower (approx. 15%) than that of the parent strain. Cytochromes of the c-type are required for the oxidation of artificial electron donors such as reduced N,N,N',N'-tetramethyl-p-phenylenediamine [Ph(NMe2)2]. This study could not demonstrate a physiological role for the c-type cytochromes which supports the idea that the minor Ph(NMe2)2-oxidizing pathway of the electron transport chain may be independent of the major pathway terminated by cytochrome d.  相似文献   

15.
Mutants of Azotobacter vinelandii affected in N2 fixation in the presence of 1 microM Na2MoO4 (conventional system), 50 nM V2O5, or under Mo deficiency (alternative system) have been isolated after Tn5 mutagenesis with the suicide plasmid pSUP1011. These mutants can be grouped into at least four broad phenotypic classes. Mutants in the first class are Nif- under Mo sufficiency but Nif+ under Mo deficiency or in the presence of V2O5. A nifk mutant and a mutant apparently affected in regulation of the conventional system belong to this class. Mutants in the second class are Nif- under all conditions. An FeMo-cofactor-negative mutant (NifB-) belongs to this class, implying an involvement of nifB in both the conventional and the alternative N2 fixation systems. The third mutant class consists of mutants incapable of N2-dependent growth under Mo deficiency. Most of the mutants in this class are also affected in N2 fixation in the presence of 1 microM Na2MoO4, with acetylene reduction rates ranging from 28 to 51% of the rates of the wild type. Strains constructed by genetic transfer of the Kanr marker of mutants from this class into nifHDK or nifK deletion mutants showed N2-dependent growth only in the presence of V2O5, suggesting that growth in the presence of V2O5 and growth under Mo deficiency are independent phenomena. The only mutant in the fourth class shows wild-type nitrogenase activity under Mo sufficiency, but only 10% of the acetylene reduction activity of the wild type in the presence of 50 nM V2O5. The acetylene reduction rates of whole cells of this mutant are identical in Mo-deficient medium and in medium containing V2O5. The conventional nitrogenase subunits are expressed in this mutant even under Mo deficiency or in the presence of V2O5; however, the NH4+- and Mo-repressible proteins normally seen under these conditions could not be detected on two-dimensional gels. The Tn5 insertion carried by this mutant makes N2 fixation dependent solely on the conventional system and consequently abolishes the vanadium effect.  相似文献   

16.
Extraction with n-heptane abolished over 95% of the NADH oxidase and the hydrogenase activity in membrane preparations from Azotobacter vinelandii. Incorporation of ubiquinone-8 or plastoquinone restored each reaction to about 55% of its original activity.  相似文献   

17.
18.
Nitrogen fixation by the free-living organism Azotobacter vinelandii can occur through the activity of three different systems that are genetically distinct but mechanistically related. A combination of bioinformatic and biochemical-genetic studies has revealed that at least 82 different genes are likely to be associated with the formation and regulation of these systems. Studies performed over many years have established that cross-talk occurs between the various nitrogen fixation systems, and that expression and fine-tuning of their activities are integrated with overall cellular physiology. Martinez-Noel and co-workers now report another newly discovered aspect of the process. Evidence is presented to suggest that a nitrogen fixation-specific paralogue of ClpX is used to control the accumulation of proteins involved in formation of a metal-sulphur cluster that provides a nitrogenase active site. The intriguing aspect of this work is that it indicates that the nitrogen fixation-associated ClpX must recruit ClpP, for which a paralogue is not duplicated within any of the nitrogen fixation regions of the genome, to achieve its function related to nitrogen fixation. Inspection of the A. vinelandii genome indicates that such recruitment of cellular housekeeping components is a common feature used to integrate nitrogen fixation with global cellular physiology.  相似文献   

19.
20.
Summary Resorcinol, ethylene glycol and glutaric acid have been found to be specific substrates for the enrichment of Azotobacter vinelandii in the presence of other Azotobacter species. The three compounds may also be used for species differentiation in the genus Azotobacter. In contrast to other reports strains of A. chroococcum and A. beijerinckii have been isolated which are able to use L-rhamnose for growth.Conditions for the production of a yellow pigment and green fluorescence by A. vinelandii from non-aromatic substrates on agar-plates have been tested.The production of water soluble yellow pigments in benzoate containing media cannot be used as a criterium for the presence of A. vinelandii. The pigment seems to be -hydroxy-muconic semialdehyde, the splitting product resulting from metacleavage of catechol. It may be formed by all Azotobacter species that can metabolize aromatic substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号