首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes glnA, ntr, nif or their promoters from Klebsiella pneumoniae cloned on the vectors, based on the plasmid RSF1010, were introduced into Rhodobacter sphaeroides cells. It was found that K. pneumoniae genes glnA, nifB, nifE, nifL and nifH are not expressed in R. sphaeroides. Neither was the glnA gene from cyanobacterium Anabaena 7120 expressed in R. sphaeroides. No functional activity of K. pneumoniae product of ntrA gene which is expressed from its own promoter, and the product of the gene nifA which is expressed from the constitutive promoter of the kanamycin resistance gene of the transposon Tn903, was detected. The implications of these findings are discussed.  相似文献   

2.
3.
4.
We have demonstrated that Rhizobium leguminosarum strain LPR1105 contains a heat stable and a heat labile glutamine synthetase (EC 6.3.1.2) activity similar to those described for other Rhizobiaceae. Most of the activity is heat stable when this strain is grown on glutamine as sole nitrogen source, but most is heat labile when grown on nitrate. Using a gene bank of R. leguminosarum DNA we have isolated two clones, which code for heat stable (p7D9) and heat labile (p4F7) glutamine synthetase activity, by complementing the glutamine auxotrophy of Klebsiella pneumoniae glnA mutants. Cross-hybridization of p7D9 with a fragment of the glnA gene of K. pneumoniae was observed, but no cross-hybridization between p7D9 and p4F7 was found. Since these two regions hybridize to genomic DNA of R. leguminosarum they are probably the structural genes for GSI and GSII, and the availability of these genes will make it possible to test this hypothesis. Clone p4F7 complements an ntrC+ but not an ntrC K. pneumoniae glnA mutant, suggesting that the ntrC gene is required for the complementation of the glutamine auxotrophy by this plasmid.  相似文献   

5.
6.
7.
8.
We have cloned and characterized three distinct Rhizobium meliloti loci involved in glutamine biosynthesis (glnA, glnII, and glnT). The glnA locus shares DNA homology with the glnA gene of Klebsiella pneumoniae, encodes a 55,000-dalton monomer subunit of the heat-stable glutamine synthetase (GS) protein (GSI), and complemented an Escherichia coli glnA mutation. The glnII locus shares DNA homology with the glnII gene of Bradyrhizobium japonicum and encodes a 36,000-dalton monomer subunit of the heat-labile GS protein (GSII). The glnT locus shares no DNA homology with either the glnA or glnII gene and complemented a glnA E. coli strain. The glnT locus codes for an operon encoding polypeptides of 57,000, 48,000, 35,000, 29,000, and 28,000 daltons. glnA and glnII insertion mutants were glutamine prototrophs, lacked the respective GS form (GSI or GSII), grew normally on different nitrogen sources (Asm+), and induced normal, nitrogen-fixing nodules on Medicago sativa plants (Nod+ Fix+). A glnA glnII double mutant was a glutamine auxotroph (Gln-), lacked both GSI and GSII forms, but nevertheless induced normal Fix+ nodules. glnT insertion mutants were prototrophs, contained both GSI and GSII forms, grew normally on different N sources, and induced normal Fix+ nodules. glnII and glnT, but not glnA, expression in R. meliloti was regulated by the nitrogen-regulatory genes ntrA and ntrC and was repressed by rich N sources such as ammonium and glutamine.  相似文献   

9.
10.
11.
Isolation of ntrA-like mutants of Azotobacter vinelandii.   总被引:6,自引:3,他引:3       下载免费PDF全文
A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants.  相似文献   

12.
13.
14.
15.
In the facultative anaerobe Klebsiella pneumoniae 17 nitrogen fixation-specific genes (nif genes) have been identified. Homologs to 12 of these genes have now been isolated from the aerobic diazotroph Azotobacter vinelandii. Comparative studies have indicated that these diverse microorganisms share striking similarities in the genetic organization of their nif genes and in the primary structure of their individual nif gene products. In this study the complete nucleotide sequence of the nifUSV gene clusters from both K. pneumoniae and A. vinelandii were determined. These genes are identically organized on their respective genomes, and the individual genes and their products exhibit a high degree of interspecies sequence homology.  相似文献   

16.
17.
Abstract A lac fusion of the vnfH promoter of Azotobacter vinelandii has been constructed. An upstream sequence seems to be necessary for the activity of the promoter. The repression of expression of this promoter by fixed nitrogen is several-fold lower compared to that of the nifH promoter. Vanadium has no role in the expression of the nifH or the vnfH promoter. Molybdenum is essential for the nifH promoter and represses the vnfH promoter. Tungsten can substitute molybdenum in its regulatory role. ntrA and vnfA are essential for the expression of vnfH , but ntrC has no role.  相似文献   

18.
Abstract Eight Nif mutants of Azospirillum brasilense were obtained by N -nitrosoguanidine mutagenesis and isolated by growth on glutamate medium. Three of these mutants had no nitrogenase activity, possessed no nitrogenase structural proteins and were complemented by Klebsiella pneumoniae nifA . Evidence will be presented that one of these mutants is defective in a nifA type regulatory gene but the other two were also complemented by K. pneumoniae ntrC and may be ntrC -type mutants. A fourth mutant was defective in the MoFe component protein of nitrogenase.  相似文献   

19.
A glutamine synthetase (GS) gene, glnA, from Bacteroides fragilis was cloned on a recombinant plasmid pJS139 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. DNA homology was not detected between the B. fragilis glnA gene and the E. coli glnA gene. The cloned B fragilis glnA gene was expressed from its own promoter and was subject to nitrogen repression in E. coli, but it was not able to activate histidase activity in an E. coli glnA ntrB ntrC deletion mutant containing the Klebsiella aerogenes hut operon. The GS produced by pJS139 in E. coli was purified; it had an apparent subunit Mr of approximately 75,000, which is larger than that of any other known bacterial GS. There was very slight antigenic cross-reactivity between antibodies to the purified cloned B. fragilis GS and the GS subunit of wild-type E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号