首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal structure of human pepsin and its complex with pepstatin.   总被引:3,自引:3,他引:0       下载免费PDF全文
The three-dimensional crystal structure of human pepsin and that of its complex with pepstatin have been solved by X-ray crystallographic methods. The native pepsin structure has been refined with data collected to 2.2 A resolution to an R-factor of 19.7%. The pepsin:pepstatin structure has been refined with data to 2.0 A resolution to an R-factor of 18.5%. The hydrogen bonding interactions and the conformation adopted by pepstatin are very similar to those found in complexes of pepstatin with other aspartic proteinases. The enzyme undergoes a conformational change upon inhibitor binding to enclose the inhibitor more tightly. The analysis of the binding sites indicates that they form an extended tube without distinct binding pockets. By comparing the residues on the binding surface with those of the other human aspartic proteinases, it has been possible to rationalize some of the experimental data concerning the different specificities. At the S1 site, valine at position 120 in renin instead of isoleucine, as in the other enzymes, allows for binding of larger hydrophobic residues. The possibility of multiple conformations for the P2 residue makes the analysis of the S2 site difficult. However, it is possible to see that the specific interactions that renin makes with histidine at P2 would not be possible in the case of the other enzymes. At the S3 site, the smaller volume that is accessible in pepsin compared to the other enzymes is consistent with its preference for smaller residues at the P3 position.  相似文献   

2.
Two pepsinogens (Pg C and Pg A) were isolated from the stomach of adult Xenopus laevis by Q-Sepharose, Sephadex G-75, and Mono-Q column chromatographies. Autolytic conversion and activation of the purified Pgs into the pepsins were examined by acid treatment. We determined the amino acid sequences from the NH2-termini of Pg C, pepsin C, Pg A, and pepsin A. Based on the sequences, the cDNAs for Pg C and Pg A were cloned from adult stomach RNA, and the complete amino acid sequences of the Pg C and Pg A were predicted. In addition, a Pg A cDNA was cloned from the stomach of adult bullfrog Rana catesbeiana, and the primary structure of the Pg A was predicted. Molecular phylogenetic analysis showed that such anuran Pg C and Pg A belong to the Pg C group and the Pg A group in vertebrates, respectively. The molecular properties of Pg C and Pg A, such as size, sequences of the activation peptide and active site, profile of autolytic activation, and pH dependency of proteolytic activity of the activated forms, pepsin C and pepsin A, resemble those of Pgs found in other vertebrates. However, the hemoglobin-hydrolyzing activity of Xenopus pepsin C is completely inhibited in the presence of equimolar pepstatin, an inhibitor of aspartic proteinases. Thus, the Xenopus pepsin C differs significantly from other vertebrate pepsins C in its high susceptibility to pepstatin, and closely resembles A-type pepsins.  相似文献   

3.
The crystal structure of Irpex lacteus aspartic proteinase (ILAP) in complex with pepstatin (a six amino acid residue peptide-like inhibitor) was determined at 1.3A resolution. ILAP is a pepsin-like enzyme, widely distributed in nature, with high milk-clotting activity relative to proteolytic activity. The overall structure was in good topological agreement with pepsin and other aspartic proteases. The structure and interaction pattern around the catalytic site were conserved, in agreement with the other aspartic proteinase/inhibitor complex structures reported previously. The high-resolution data also supported the transition state model, as proposed previously for the catalytic mechanism of aspartic proteinase. Unlike the other aspartic proteinases, ILAP was found to require hydrophobic residues either in the P(1) or P(1') site, and also in the P(4) and/or P(3) site(s) for secondary interactions. The inhibitor complex structure also revealed the substrate binding mechanism of ILAP at the P(3) and P(4) site of the substrate, where the inserted loop built up the unique hydrophobic pocket at the P(4) site.  相似文献   

4.
The protease of human immunodeficiency virus has been expressed in Escherichia coli and purified to apparent homogeneity. Immunoreactivity toward anti-protease peptide sera copurified with an activity that cleaved the structural polyprotein gag p55 and the peptide corresponding to the sequence gag 128-135. The enzyme expressed as a nonfusion protein exhibits proteolytic activity with a pH optimum of 5.5 and is inhibited by the aspartic protease inhibitor pepstatin with a Ki of 1.1 microM. Replacement of the conserved residue Asp-25 with an Asn residue eliminates proteolytic activity. Analysis of the minimal peptide substrate size indicates that 7 amino acids are required for efficient peptide cleavage. Size exclusion chromatography is consistent with a dimeric enzyme and circular dichroism spectra of the purified enzyme are consistent with a proposed structure of the protease (Pearl, L.H., and Taylor, W.R. (1987) Nature 329, 351-354). These data support the classification of the human immunodeficiency virus protease as an aspartic protease, likely to be structurally homologous with the well characterized family that includes pepsin and renin.  相似文献   

5.
Abstract: Proteolytic processing of neuropeptide precursors is required for production of active neurotransmitters and hormones. In this study, a chromaffin granule (CG) aspartic proteinase of 70 kDa was found to contribute to enkephalin precursor cleaving activity, as assayed with recombinant ([35S]Met)preproenkephalin. The 70-kDa CG aspartic proteinase was purified by concanavalin A-Sepharose, Sephacryl S-200, and pepstatin A agarose affinity chromatography. The proteinase showed optimal activity at pH 5.5. It was potently inhibited by pepstatin A, a selective aspartic proteinase inhibitor, but not by inhibitors of serine, cysteine, or metalloproteinases. Lack of inhibition by Val-d -Leu-Pro-Phe-Val-d -Leu—an inhibitor of pepsin, cathepsin D, and cathepsin E—distinguishes the CG aspartic proteinase from classical members of the aspartic proteinase family. The CG aspartic proteinase cleaved recombinant proenkephalin between the Lys172-Arg173 pair located at the COOH-terminus of (Met)enkephalin-Arg6-Gly7-Leu8, as assessed by peptide microsequencing. The importance of full-length prohormone as substrate was demonstrated by the enzyme's ability to hydrolyze 35S-labeled proenkephalin and proopiomelanocortin and its inability to cleave tri- and tetrapeptide substrates containing dibasic or monobasic cleavage sites. In this study, results provide evidence for the role of an aspartic proteinase in proenkephalin and prohormone processing.  相似文献   

6.
The avian sarcoma/leukemia virus protease (PR), purified from avian myeloblastosis virus has a native molecular mass of 26 kDa, suggesting a dimer structure. The enzymatic activity of PR has been characterized using synthetic peptide substrates. PR is most active at pH 5.5, 35 degrees C and 2-3 M NaCl. Under these conditions PR cleaves decapeptides which are resistant in low ionic strength. This high, nonphysiological, salt concentration also increases the proteolytic activity of a cellular aspartic protease, pepsin. PR and pepsin show additional similarities: they both cleave a synthetic decapeptide at the same Tyr-Pro bond in low and high salt, while the cleavage site preferences of human renin and cathepsin-D in this substrate are altered at high salt concentrations. In addition, iodination of the tyrosine residue in this decapeptide causes an increase in the rates of hydrolysis by both PR and pepsin. However, Km values are too high to be estimated accurately for PR using Tyr-Pro and Tyr(I)-Pro decapeptides as substrates. Comparison of the digestion products of two additional decapeptides, altered in a single amino acid residue, shows that PR cleaves at fewer sites than all three cellular enzymes. Furthermore pepstatin, a strong inhibitor of pepsin, renin, and cathepsin-D has little effect on PR.  相似文献   

7.
Pepsin is formed as the zymogen, pepsinogen, which includes an additional 44 residue prosegment (PS) on the N-terminus. Upon acidification (pH <3) the PS is removed, yielding active pepsin. The PS is critical to such processes as the initiation of correct folding and protein stability. In the present study, the NMR assignments of the 34.6 kDa native porcine pepsin and porcine pepsin complexed with pepstatin are reported in order to obtain structural information regarding PS-catalyzed protein folding. Such information would contribute to a better understanding of the nature of folding/unfolding energy barrier of pepsin and other aspartic proteases.  相似文献   

8.
A new pepsinogen component, pepsinogen C, was purified from the gastric mucosa of Japanese monkey. The chromatographic behavior of this component on DE-32 cellulose was coincident with that of pepsinogen III-2 previously reported (1), and final purification was performed by large-scale polyacrylamide disc gel electrophoresis. The molecular weight was 35,000 as determined by gel filtration. The ratios of glutamic acid to aspartic acid and of leucine to isoleucine were higher than those of other Japanese monkey pepsinogens. The activated form, pepsin C, had a molecular weight of 27,000 and contained a large number of glutamic acid residues. The optimal pH for hemoglobin digestion was 3.0. Pepsin C could scarcely hydrolyze the synthetic substrate, N-acetyl-L-phenylalanyl-3, 5-diiodo-L-tyrosine (APDT). 1, 2-Epoxy-3-(p-nitrophenoxy)propane (EPNP), p-bromophenacyl bromide, and diazoacetyl-DL-norleucine methyl ester (DAN) inhibited pepsin C [EC 3.4.23.3] in the same way as pepsin III-3 of Japanese monkey. The susceptibility to pepstatin of pepsin C was lower than that of pepsin III-3, and 500 times more pepstatin was required for the same inhibitory effect. The classification and nomenclature of Japanese monkey pepsinogens and pepsins are discussed.  相似文献   

9.
Campos LA  Sancho J 《FEBS letters》2003,538(1-3):89-95
Pepsin is an aspartic protease that acts in food digestion in the mammal stomach. An optimal pH of around 2 allows pepsin to operate in its natural acidic environment, while at neutral pH the protein is denatured. Although the pH dependence of pepsin activity has been widely investigated since the 40s, a renewed interest in this protein has been fueled by its homology to the HIV and other aspartic proteases. Recently, an inactive pepsin conformation has been identified that accumulates at mildly acidic pH, whose structure and properties are largely unknown. In this paper, we analyse the conformation of pepsin at different pHs by a combination of spectroscopic techniques, and obtain a detailed characterisation of the intermediate. Our analysis indicates that it is the dominant conformation from pH 4 to 6.5. Interestingly, its near UV circular dichroism spectrum is identical to that of the native conformation that appears at lower pH values. In addition, we show that the intermediate binds the active site inhibitor pepstatin with a strength similar to that of the native conformation. Pepsin thus adopts, in the 6.5-4.0 pH interval, a native-like although catalytically inactive conformation. The possible role of this intermediate during pepsin transportation to the stomach lumen is discussed.  相似文献   

10.
Human renin is inactivated by a diazoacyl compound (diazoacetylglycine ethyl ester; N2CHCO-Gly-OEt) in the presence of Cu(II). The mechanism of the inactivation is presumably identical to that which has been determined for pepsin and several other proteinases: esterification of the β-carboxyl of an aspartic acid residue at the active site of the enzyme. Renin's inhibition by the diazoacyl reagent, its specificity toward a hydrophobic sequence, and its inhibition by pepstatin, all suggest a close relationship to the acid proteinases, especially pepsin and cathepsin D. However, renin, a neutral proteinase, would be better classified together with other diazoacyl-inhibited enzymes by active site rather than pH optimum. The term “aspartic proteinase” is suggested for this group of enzymes.  相似文献   

11.
Pepstatin A is well known to be an inhibitor of aspartic proteinases such as pepsin, cathepsins D and E. Except for its role as a proteinase inhibitor, however, the pharmacological action of pepstatin A upon cells remain unclear. In this study, we found that pepstatin A suppressed receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. Pepstatin A suppressed the formation of multinuclear osteoclasts dose-dependently. This inhibition of the formation only affected osteoclast cells, i.e., not osteoblast-like cells. Furthermore, pepstatin A also suppressed differentiation from pre-osteoclast cells to mononuclear osteoclast cells dose-dependently. This inhibition seems to be independent of the activities of proteinases such as cathepsin D, because the formation of osteoclasts was not suppressed with the concentration that inhibited the activity of cathepsin D. Cell signaling analysis indicated that the phosphorylation of ERK was inhibited in pepstatin A-treated cells, while the phosphorylation of IkappaB and Akt showed almost no change. Furthermore, pepstatin A decreased the expression of nuclear factor of activated T cells c1 (NFATc1). These results suggest that pepstatin A suppresses the differentiation of osteoclasts through the blockade of ERK signaling and the inhibition of NFATc1 expression.  相似文献   

12.
Human gastric juice contains 3 major proteolytic components (pepsins1,3 and 5 or gastricsin). Pepsin 1 is increased in peptic ulcer and it's properties are relatively poorly understood. Studies with pepstatin the highly specific aspartic-protease inhibitor have therefore been carried out on individual active and proenzymes to assess any enzymic similarities. Human pepsin 1 was inhibited with high affinity similar to pepsin 3, whereas pepsin 5(gastricsin) was at least 40 times less sensitive. Inhibition of human pepsinogens 1,3 and 5 and pig pepsinogen A showed similar trends to the active enzymes. Studies using Sephadex gel filtration showed that pepstatin does not bind to pepsinogens and inhibition arises from pepstatin binding the pepsins released upon activation. Pepstatin inhibition was shown to be relatively independent of pH between 1.5 and 3.8 although at higher pH inhibition was less effective. The evidence suggests that pepsin 1 is similar to pepsin 3 and pepstatin inhibits by a one to one molecular binding to the active site. The explanation for the reduced affinity of pepstatin to pepsin 5(gastricsin) needs further study by co-crystallisation X-ray analysis.  相似文献   

13.
Upon activation of human pepsinogen A at pH 2.0 in the presence of pepstatin, an intermediate form was generated together with pepsin A. This activation intermediate could be separated from pepsinogen A and pepsin A by DE-32 cellulose chromatography at pH 5.5. It had a molecular weight intermediate between those of pepsinogen A and pepsin A, and contained about half the number of basic amino acid residues in pepsinogen A. It had phenylalanine as the amino(N)-terminal amino acid, and was deduced to be generated by release of N-terminal 25 residue segment from pepsinogen A. Amino acid sequence determination of the N-terminal portions of pepsinogen A and the intermediate from enabled us to elucidate the entire acid sequence of the 47-residue activation peptide segment as follow: [Formula: see text]. On the other hand, upon activation of pepsinogen A at pH 2.0 in the absence of pepstatin, cleavage of the activation segment occurred at several additional bonds. In addition, upon activation both in the presence and in the absence of pepsitatin, an additional activation intermediate, designated pepsin A', was formed in minor quantities. This form was identical with pepsin A, except that it had an additional Pro-Thr-Leu sequence preceding the N-terminal valine of pepsin A.  相似文献   

14.
A ketone analog of pepstatin, in which the 3S hydroxyl group is oxidized to a ketone group, has been synthesized and shown to be a potent inhibitor of pepsin. Kinetics of inhibition of pepsin provide evidence that the ketone pepstatin analog binds to pepsin differently than pepstatin. The relationship of these complexes to crystal complexes of pepstatin-carboxyl proteases is discussed.  相似文献   

15.
The synthesis of 10 analogues of pepstatin modified so that statine is replaced by 4-amino-3-hydroxy-3,6-dimethylheptanoic acid (Me3Sta) or 4-amino-3-hydroxy-3-methyl-5-phenylpentanoic acid (Me3AHPPA) residues is reported. Both the 3S,4S and 3R,4S diastereomers of each analogue were tested as inhibitors of the aspartic proteases, porcine pepsin, cathepsin D, and penicillopepsin. In all cases the 3R,4S diastereomer (rather than the 3S,4S diastereomer) of the Me3Sta and Me3AHPPA derivatives was found to be the more potent inhibitor of the aspartic protease (Ki = 1.5-10 nM for the best inhibitors), in contrast to the results obtained with statine (Sta) or AHPPA derivatives, where the 3S,4S diastereomer is the more potent inhibitor for each diastereomeric pair of analogues. The Me3Sta- and Me3AHPPA-containing analogues are only about 10-fold less potent than the corresponding statine and AHPPA analogues and 100-1000-fold more potent than the corresponding inhibitors lacking the C-3 hydroxyl group. Difference NMR spectroscopy indicates that the (3R,4S)-Me3Sta derivative induces conformational changes in porcine pepsin comparable to those induced by the binding of pepstatin and that the (3S,4S)-Me3Sta derivatives do not induce the difference NMR spectrum. These results require that the C-3 methylated analogues of statine-containing peptides must inhibit enzymes by a different mechanism than the corresponding statine peptides. It is proposed that pepstatin and (3S)-statine-containing peptides inhibit aspartic proteases by a collected-substrate inhibition mechanism. The enzyme-inhibitor complex is stabilized, relative to pepstatin analogues lacking the C-3 hydroxyl groups, by the favorable entropy derived when enzyme-bound water is returned to bulk solvent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Two procedures were developed for the preparation of duck pepsinogen, an enzyme from the family of aspartic proteases (EC 3.4.23.1) and its zymogen. 2. The amino acid composition, sugar content and the partial N- and C-terminal sequences of both the enzyme and the zymogen were determined. These sequences are highly homologous with the terminal sequences of chicken pepsin(ogen). 3. Duck pepsinogen and pepsin are unlike other pepsin(ogen)s in being relatively stable in alkaline media: pepsinogen is inactivated at pH 12.1, pepsin at pH 9.6. 4. Duck pepsin is inhibited by diazoacetyl-D,L-norleucine methyl ester (DAN), 1,2-epoxy-3(p-nitrophe-noxy)propane (EPNP), pepstatin and a synthetic pepsin inhibitor Val-D-Leu-Pro-Phe-Phe-Val-D- Leu. The pH-optimum of duck pepsin determined in the presence of synthetic substrate is pH 4. 5. Duck pepsin has a marked milk-clotting activity whereas its proteolytic activity is lower than that of chicken pepsin. 6. The activation of duck pepsinogen is paralleled by two conformational changes. The activation half-life determined in the presence of a synthetic substrate at pH 2 and 14 degrees C is 20 sec.  相似文献   

17.
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.  相似文献   

18.
We have synthesized eight tripeptide analogs of pepstatin in which both the side-chain and stereochemistry of the novel amino acid statine have been altered. They have been compared to pepstatin for inhibition of pepsin and cathepsin D activity, inhibition of autolysis at pH 4, and inhibition of protein degradation in cultured cells. Effective inhibition of aspartic proteinase activity appears to require the novel amino acid to have a bulky hydrophobic side-chain and the S-configuration at both chiral centers. However, the Cbz-Val-Val-(3S4S)-statine peptide was more effective than pepstatin in cultured cells, and inhibition was also achieved, and in some cases enhanced relative to pepstatin, by its stereoisomers and by tripeptides containing valyl and alanyl analogs of statine.  相似文献   

19.
The Antarctic notothenioid Trematomus bernacchii (rock cod) lives at a constant mean temperature of -1.9 degrees C. Gastric digestion under these conditions relies on the proteolytic activity of aspartic proteases such as pepsin. To understand the molecular mechanisms of Antarctic fish pepsins, T. bernacchii pepsins A1 and A2 were cloned, overexpressed in Escherichia coli, purified and characterized with a number of biochemical and biophysical methods. The properties of these two Antarctic isoenzymes were compared to those of porcine pepsin and found to be unique in a number of ways. Fish pepsins were found to be more temperature sensitive, generally less active at lower pH and more sensitive to inhibition by pepstatin than their mesophilic counterparts. The specificity of Antarctic fish pepsins was similar but not identical to that of pig pepsin, probably owing to changes in the sequence of fish enzymes near the active site. Gene duplication of Antarctic rock cod pepsins is the likely mechanism for adaptation to the harsh temperature environment in which these enzymes must function.  相似文献   

20.
Human gastric juice contains 3 major proteolytic components (pepsins1,3 and 5 or gastricsin). Pepsin 1 is increased in peptic ulcer and it's properties are relatively poorly understood. Studies with pepstatin the highly specific aspartic-protease inhibitor have therefore been carried out on individual active and proenzymes to assess any enzymic similarities. Human pepsin 1 was inhibited with high affinity similar to pepsin 3, whereas pepsin 5(gastricsin) was at least 40 times less sensitive. Inhibition of human pepsinogens 1,3 and 5 and pig pepsinogen A showed similar trends to the active enzymes. Studies using Sephadex gel filtration showed that pepstatin does not bind to pepsinogens and inhibition arises from pepstatin binding the pepsins released upon activation. Pepstatin inhibition was shown to be relatively independent of pH between 1.5 and 3.8 although at higher pH inhibition was less effective. The evidence suggests that pepsin 1 is similar to pepsin 3 and pepstatin inhibits by a one to one molecular binding to the active site. The explanation for the reduced affinity of pepstatin to pepsin 5(gastricsin) needs further study by co-crystallisation X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号