首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Immunocytochemical demonstration of protein kinase C (PKC) subspecies (alpha, beta, gamma) was carried out in Pacinian corpuscles of rat hind feet using monoclonal or polyclonal antibodies against each of these subspecies. The inner core cells and lamellae and the Schwann cell cytoplasm of the nerve fiber innervating the corpuscle were strongly positive for PKC alpha-immunoreactivity (IR). In contrast, the axon terminal and the outer core did not display any positive alpha-IR. Very weak PKC beta-IR was detected in the ultraterminal region of the axon terminal, while the trunk region showed no immunoreactivity. Very faint PKC beta-IR was found also in the lamellar cells located at the periphery of the inner core and the endoneurial fibroblasts in the intermediate layer. PKC gamma-IR was not detected in any part of the corpuscle. The strong PKC alpha-IR in the inner core and the presence or absence of PKC alpha-, beta-, and gamma-IR in the axon terminal are discussed from the point of view of the functional aspects of each part.  相似文献   

3.
4.
Although such solubility is uncommon among proteins generally, several bovine brain proteins were found to be soluble in 2.5% perchloric acid, and many of them were in vitro substrates for protein kinase C (Ca2+/phospholipid-dependent enzyme). Two of the perchloric acid-soluble brain proteins were purified, p43 and p17. P43 and p17 could be phosphorylated by protein kinase C only in the presence of Ca2+ and phospholipids and neither was a substrate for protein kinase II. P43 was subsequently identified as the neurospecific, calmodulin-binding protein, neuromodulin (also designated P-57, GAP43, B50, or F1) (Alexander, K. H., Wakim, B. T., Doyle, G. S., Walsh, K. A., and Storm, D. R. (1988) J. Biol. Chem. 263, 7544-7549). A rapid purification method for neuromodulin was developed taking advantage of its newly discovered property, solubility in 2.5% perchloric acid, and of its previously recognized calmodulin-binding property. Evidence was obtained that neuromodulin isolated from cytosolic extract exists as a mixture of molecular forms and that the Ca2+-binding S100 protein-beta discriminates among the different neuromodulin isoforms in forming covalent complexes via disulfide bridges; this discrimination may be explained by analogous differences observed between the NH2-terminal amino acid sequences of p57 and F1. Solubility in 2.5% perchloric acid was demonstrated for another rat brain protein kinase C substrate, p87. We suggest that perchloric acid solubility might be a common property of protein kinase C substrates.  相似文献   

5.
Detailed in vitro comparisons of the biochemical characteristics of three protein kinase C isozymes were performed. As an alternative to earlier uncertain separation methods and expression schemes, highly purified and genetically distinct protein kinase C enzymes were produced using the baculovirus expression system. The baculovirus expression system yielded approximately 200-300 micrograms of the purified isozyme from 3 x 10(8) (100 ml of culture medium) baculovirus-infected insect cells. Biochemical characterization of the expressed isozymes indicated that the three isozymes had virtually indistinguishable Ca2+, Mg2+, and ATP dependencies. However, in certain critical functional characteristics such as phosphatidylserine dependencies, phospholipid and substrate preferences, and arachidonic acid activation, the gamma isozyme exhibited distinctive properties when compared with both the alpha and beta II subtypes. In addition, the activity of the beta II subtype was more dependent upon diacylglycerol or phorbol esters for activation than either the alpha or gamma isoforms. The alpha isozyme, unlike the beta II and gamma forms, was totally dependent on Ca2+ for activation in the presence of free arachidonic acid. These studies provide definitive characterizations of the pure isoforms; many of the findings were consistent with earlier enzymatic observations using hydroxyapatite-purified isoforms. Thus, the distinctive biochemical properties of the protein kinase C isozymes are consistent with the hypothesis that each isoform may have distinct roles in signal transduction processes.  相似文献   

6.
The independently folding C2 domain motif serves as a Ca(2+)-dependent membrane docking trigger in a large number of Ca(2+) signaling pathways. A comparison was initiated between three closely related C2 domains from the conventional protein kinase C subfamily (cPKC, isoforms alpha, beta, and gamma). The results reveal that these C2 domain isoforms exhibit some similarities but are specialized in important ways, including different Ca(2+) stoichiometries. In the absence of membranes, Ca(2+) affinities of the isolated C2 domains are similar (2-fold difference) while Hill coefficients reveal cooperative Ca(2+) binding for the PKC beta C2 domain but not for the PKC alpha or PKC gamma C2 domain (H = 2.3 +/- 0.1 for PKC beta, 0.9 +/- 0.1 for PKC alpha, and 0.9 +/- 0.1 for PKC gamma). When phosphatidylserine-containing membranes are present, Ca(2+) affinities range from the sub-micromolar to the micromolar (7-fold difference) ([Ca(2+)](1/2) = 0.7 +/- 0.1 microM for PKC gamma, 1.4 +/- 0.1 microM for PKC alpha, and 5.0 +/- 0.2 microM for PKC beta), and cooperative Ca(2+) binding is observed for all three C2 domains (Hill coefficients equal 1.8 +/- 0.1 for PKC beta, 1.3 +/- 0.1 for PKC alpha, and 1.4 +/- 0.1 for PKC gamma). The large effects of membranes are consistent with a coupled Ca(2+) and membrane binding equilibrium, and with a direct role of the phospholipid in stabilizing bound Ca(2+). The net negative charge of the phospholipid is more important to membrane affinity than its headgroup structure, although a slight preference for phosphatidylserine is observed over other anionic phospholipids. The Ca(2+) stoichiometries of the membrane-bound C2 domains are detectably different. PKC beta and PKC gamma each bind three Ca(2+) ions in the membrane-associated state; membrane-bound PKC alpha binds two Ca(2+) ions, and a third binds weakly or not at all under physiological conditions. Overall, the results indicate that conventional PKC C2 domains first bind a subset of the final Ca(2+) ions in solution, and then associate weakly with the membrane and bind additional Ca(2+) ions to yield a stronger membrane interaction in the fully assembled tertiary complex. The full complement of Ca(2+) ions is needed for tight binding to the membrane. Thus, even though the three C2 domains are 64% identical, differences in Ca(2+) affinity, stoichiometry, and cooperativity are observed, demonstrating that these closely related C2 domains are specialized for their individual functions and contexts.  相似文献   

7.
8.
A calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was purified to near homogeneity from bovine polymorphonuclear leucocytes. The purified enzyme had a specific activity of 10 000 U/mg protein and on SDS gelelectrophoresis the Mr was 88 000. The enzyme activity was almost totally dependent upon phosphatidylserine and could be strongly activated by Ca2+ concentrations in the micromolar range. At lower concentrations of calcium (less than 1 X 10(-7) M) the enzyme was only activated by the simultaneous presence of phosphatidylserine and diolein. Phorbol 12-myristate 13-acetate mimicked the effect of diolein and partially activated the enzyme. Protein kinase C activity and the phorbolester binding protein co-purified throughout all the purification steps.  相似文献   

9.
Bovine brain cytosol is shown to contain two heat-resistant inhibitors of protein kinase C, with the following characteristics: 1. One protein kinase C inhibitor can be easily purified to homogeneity. Evidence is presented that this polypeptide of Mr 19,000 is calmodulin. It inhibits protein kinase C with an EC50 of about 2.5 microM and the inhibition is Ca2+-independent. It inhibits only intact protein kinase C. Removal of the regulatory domain of protein kinase C, by limited proteolysis with trypsin, abolishes the inhibition. 2. Another protein kinase C inhibitory activity has been partially purified. Its Mr is low (Mr 600-700, as estimated by gel chromatography). It is not digested by proteases, is hydrophilic, acid- and alkali-resistant, acts Ca2+-independently, and, in contrast to calmodulin, inhibits even the catalytic fragment of protein kinase C after removal of the regulatory domain by limited proteolysis. This inhibition is, at least partially, due to a competition with ATP. Besides protein kinase C, calcium/calmodulin-dependent protein kinase II is inhibited to a similar extent. cAMP-dependent protein kinase is not affected.  相似文献   

10.
We examined the translocation of diacylglycerol kinase (DGK) alpha and gamma fused with green fluorescent protein in living Chinese hamster ovary K1 cells (CHO-K1) and investigated temporal and spatial correlations between DGK and protein kinase C (PKC) when both kinases are overexpressed. DGKalpha and gamma were present throughout the cytoplasm of CHO-K1 cells. Tetradecanoylphorbol 13-acetate (TPA) induced irreversible translocation of DGKgamma, but not DGKalpha, from the cytoplasm to the plasma membrane. The (TPA)-induced translocation of DGKgamma was inhibited by the mutation of C1A but not C1B domain of DGKgamma and was not inhibited by staurosporine. Arachidonic acid induced reversible translocation of DGKgamma from the cytoplasm to the plasma membrane, whereas DGKalpha showed irreversible translocation to the plasma membrane and the Golgi network. Purinergic stimulation induced reversible translocation of both DGKgamma and alpha to the plasma membrane. The timing of the ATP-induced translocation of DGKgamma roughly coincided with that of PKCgamma re-translocation from the membrane to the cytoplasm. Furthermore, re-translocation of PKCgamma was obviously hastened by co-expression with DGKgamma and was blocked by an inhibitor of DGK (R59022). These results indicate that DGK shows subtype-specific translocation depending on extracellular signals and suggest that PKC and DGK are orchestrated temporally and spatially in the signal transduction.  相似文献   

11.
We and others previously showed that p38 mitogen-activated protein kinase is indispensable for myogenic differentiation. However, it is less clear which of the four p38 isoforms in the mouse genome participates in this process. Using C2C12 myogenic cells as a model, we showed here that p38alpha, beta, and gamma are expressed with distinct expression patterns during differentiation. Knockdown of any of them by small interfering RNA inhibits myogenic differentiation, which suggests that the functions of the three p38 isoforms are not completely redundant. To further elucidate the unique role of each p38 isoform in myogenic differentiation, we individually knocked down one p38 isoform at a time in C2C12 cells, and we compared the whole-genome gene expression profiles by microarrays. We found that some genes are coregulated by all three p38 isoforms, whereas others are uniquely regulated by one particular p38 isoform. Furthermore, several novel p38 target genes (i.e., E2F2, cyclin D3, and WISP1) are found to be required for myogenin expression, which provides a molecular basis to explain why different p38 isoforms are required for myogenic differentiation.  相似文献   

12.
A novel protein kinase which phosphorylates a synthetic peptide substrate (RRPDAHRTPNRAF) has been purified approximately 200,000-fold from bovine brain. This peptide contains the consensus sequence for phosphorylation by the p34cdc2 kinase. The purification procedure took advantage of the phenomenon that this novel brain kinase, in partially purified extracts, chromatographed on a gel filtration column as a high molecular weight complex which dissociated in buffer containing 1 M NaCl. The purified native enzyme was estimated to be approximately 63,000, and displayed two bands of M(r) = 33,000 and 25,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On Western immunoblot, the M(r) = 33,000 peptide reacted strongly with antibodies specific for a conserved amino-terminal sequence, weakly with antibodies to the conserved PSTAIRE sequence, and not at all with antibodies to the carboxyl terminus, of HeLa cell p34cdc2. The brain kinase and p34cdc2 were similar in displaying good activity toward the parent peptide substrate, but no activity toward peptide analogues in which the -T-P- motif was substituted with either -T-G- or -T-A-. Both kinases showed marked preference in phosphorylating a peptide derived from H1 histone (KTPKKAKKPKTPKKAKKL), and both kinases could be phosphorylated by the src-family tyrosine kinase, p56lyn, purified from bovine spleen. However, the brain kinase did not co-purify with a subunit having a molecular weight corresponding to known cyclins, nor did it undergo specific interaction with p13suc1 beads, suggesting that this enzyme is distinct from p34cdc2.  相似文献   

13.
14.
A new eukaryotic initiation factor 2 kinase has been purified for the first time from calf brain cytosol. The purification of a nonabundant novel protein kinase activity, designated as PKI, that phosphorylates the alpha subunit of eukaryotic initiation factor 2 is described. The protein kinase activity was assayed using purified initiation factor 2 as a substrate and was purified by ammonium sulphate precipitation, conventional chromatography in heparin-Sepharose and phosphocellulose and by high performance size exclusion and anion exchange chromatographies. The protein kinase activity elutes in the region of 140,000 in the size exclusion chromatography and is associated with two different polypeptides a and b, with relative molecular masses of 38,000 and 20,000 and an approximate ratio of 2.5-3.0:1. The protein kinase does not phosphorylate casein or histones and it is independent of cyclic nucleotides. It can be classified as a serine kinase since the phosphorylation of the alpha subunit of eIF-2 is produced in serine residues. Under these conditions none of the kinase subunits are phosphorylated.  相似文献   

15.
Protein kinase C (PKC) from bovine neutrophils was purified 1420-fold. Subcellular fractionation analysis of bovine neutrophil homogenate in the presence of EGTA indicated that more than 95% of the PKC activity was present in the soluble fraction. The purification procedure from cytosol involved sequential chromatographic steps on DE-52 cellulose, Mono Q, and phenyl-Sepharose. Whereas bovine brain PKC could be resolved into four isoenzymatic forms by chromatography on a hydroxylapatite column, bovine neutrophil PKC was eluted in a single peak, suggesting that it corresponded to a single isoform. The apparent molecular weight of bovine neutrophil PKC was 82,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By filtration on Sephadex G-150, a molecular weight of 85,000 was calculated, indicating that bovine neutrophil PKC in solution is monomeric. Its isoelectric point was 5.9 +/- 0.1. Bovine neutrophil PKC was autophosphorylated in the presence of [gamma-32P]ATP, provided that the medium was supplemented with Mg2+, Ca2+, phosphatidylserine, and diacylglycerol; phorbol myristate acetate could substitute for diacylglycerol. Autophosphorylated PKC could be cleaved by trypsin to generate two radiolabeled peptides of Mr 48,000 and 39,000. The labeled amino acids were serine and threonine. During the course of the purification procedure of bovine neutrophil PKC, a protein of Mr 23,000, which was abundant in the cytosolic fraction of the homogenate, was found to exhibit a strong propensity to PKC-dependent phosphorylation in the presence of [gamma-32P]ATP, Mg2+, Ca2+, phosphatidylserine, and diacylglycerol. This protein was recovered together with PKC in one of the two active peaks eluted from the Mono Q column at the second step of PKC purification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A 27,000-fold purification of pyridoxal kinase from bovine brain tissue has been achieved by a combination of ammonium sulfate fractionation, DEAE-cellulose chromatography, hydroxyapatite chromatography, Sephadex G-150 gel filtration, Blue Sepharose CL-6B chromatography, and Phenyl-Superose chromatography. The final chromatography step yields a homogeneous preparation of high specific activity (2105 nmol/min/mg protein). The molecular mass of the native enzyme was estimated to be approximately 80,000 on gel filtration. The subunit molecular mass was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis to be approximately 39,500. This indicates that pyridoxal kinase is a dimeric enzyme.  相似文献   

17.
Protein kinase C epsilon was chromatographically purified from rabbit brain to electrophoretic homogeneity. We identified the enzyme as the epsilon species of novel-type protein kinase C (nPKC epsilon), originally discovered and defined by cDNA cloning [Ohno, S., et al. (1988) Cell 53, 731-741], on the basis of the following observations: (i) the enzyme reacts specifically with an antipeptidic antiserum to nPKC epsilon but not with antisera to any of the other molecular species of PKC thus far known; (ii) it exhibits enzymatic behavior essentially identical to that of a recombinant nPKC epsilon purified from transfected COS cells [Konno, Y., et al. (1989) J. Biochem. 106, 673-678] and distinct from that of conventional PKC (alpha, beta I/II, and gamma) in its dependence on magnesium concentration and cofactors such as phospholipids, calcium, and phorbol ester; and (iii) it has an apparent molecular weight of 95.7K +/- 0.4K on SDS-PAGE, significantly greater than the other conventional and novel PKCs thus far identified. Notably, calcium exhibits a complex effect, both positive and negative, on the kinase activity of epsilon depending on the kind of substrate and the coexisting phospholipid, calling for a modification of the current notion that epsilon is a kinase unresponsive to calcium. The amount of epsilon species in the brain was estimated to be comparable to that of each conventional species, indicating that epsilon stands as one of the major PKC family members in brain. Furthermore, the enzyme shows a broader substrate spectrum than conventional PKC when examined with endogenous substrates, implying that it may cover a wider or different range of physiological functions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Ca2+/calmodulin-dependent protein kinase (Ca2+/CaM kinase I), which phosphorylates site I of synapsin I, has been highly purified from bovine brain. The physical properties and substrate specificity of Ca2+/CaM kinase I were distinct from those of all other known Ca2+/CaM kinases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified enzyme preparation consisted of two major polypeptides of Mr 37,000 and 39,000 and a minor polypeptide of Mr 42,000. In the presence of Ca2+ and calmodulin (CaM), all three polypeptides bound CaM, were autophosphorylated on threonine residues, and were labeled by the photoaffinity label 8-azido-ATP. Peptide maps of the three autophosphorylated polypeptides were very similar. The Stokes radius and the sedimentation coefficient of the enzyme were, respectively, 31.8 A and 3.25 s. A molecular weight of 42,400 and a frictional ratio of 1.38 were calculated from the above values, suggesting that Ca2+/CaM kinase I is a monomer. It is possible that the polypeptides of lower molecular weight are derived from the polypeptide of Mr 42,000 by proteolysis; alternatively, the polypeptides may represent isozymes of Ca2+/CaM kinase I. Synapsin I (site I) was the best substrate tested (Km, 2-4 microM) for Ca2+/CaM kinase I. Of many additional proteins tested, only protein III (a phosphoprotein related to synapsin I) and smooth muscle myosin light chain were phosphorylated. Ca2+/CaM kinase I was found in highest concentration in brain, where it showed widespread regional and subcellular distributions. In addition, the enzyme had a widespread and predominantly cytosolic tissue distribution. The widespread neuronal and tissue distribution of Ca2+/CaM kinase I suggests that other substrates might exist for this enzyme in both neuronal and non-neuronal tissues.  相似文献   

19.
The kininogenase activity of alpha- and beta/gamma-forms of bovine thrombin with respect to the high molecular weight (HMW) and low molecular weight (LMW) human kininogens was studied. It was shown that both forms of the enzyme split of bradykinin from these kininogens. The kininogenase activity of alpha-thrombin is completely blocked by the highly specific thrombin inhibitor Nalpha-dansyl-L-arginine-p-ethylpiperidineamide, but not by the soya bean trypsin inhibitor. The alpha- and beta/gamma-forms of thrombin hydrolyze HMW (Km(app) = 4.5 and 3.3 microM, respectively) and LMW (Km(app) = 10.1 and 4.7 microM, respectively). The specific constants (kcat/Km(app) ) for thrombin with respect to the substrates differ about 7-fold, predominantly due to the high catalytic rates of HMW as compared to LMW; the kcat values are 0.18 and 0.06 min-1, respectively. alpha-Thrombin upon a long-term (over 1 hour) exposure to HMW, besides bradykinin, splits off the product inhibiting the kininogenase activity of thrombin. No differences in the specificity of the beta/gamma-form of thrombin with resect to HMW and LMW were detected.  相似文献   

20.
Tubulin, the 100-kDa subunit protein of microtubules, is a heterodimer of two 50-kDa subunits, alpha and beta. Both alpha and beta subunits exist as numerous isotypic forms. There are four isotypes of beta-tubulin in bovine brain tubulin preparations; their designations and relative abundances in these preparations are as follows: beta I, 3%; beta II, 58%; beta III, 25%; and beta IV, 13%. We have previously reported the preparation of monoclonal antibodies specific for beta II and beta III (Banerjee, A., Roach, M. C., Wall, K. A., Lopata, M. A., Cleveland, D. W., and Luduena, R. F. (1988) J. Biol. Chem. 263, 3029-3034; Banerjee, A., Roach, M. C., Trcka, P., and Luduena, R. F. (1990) J. Biol. Chem. 265, 1794-1799). We here report the preparation of a monoclonal antibody specific for beta IV. By using this antibody together with those specific for beta II and beta III, we have prepared isotypically pure tubulin dimers with the composition alpha beta II, alpha beta III, and alpha beta IV. We have found that, in the presence of microtubule-associated proteins, all three dimers assemble into microtubules considerably faster and to a greater extent than does unfractionated tubulin. More assembly was noted with alpha beta II and alpha beta III than with alpha beta IV. When assembly is measured in the presence of taxol (10 microM), little difference is seen among the isotypically purified dimers or between them and unfractionated tubulin. These results indicate that the assembly properties of a tubulin preparation are influenced by its isotypic composition and raise the possibility that the structural differences among tubulin isotypes may have functional significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号