首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The plenty of data about structural changes in the ribosome during its functioning has been accumulated. The most interesting information on such changes was obtained by cryo-EM of various ribosomal complexes with the ligands and by combination of rRNA site-directed mutagenesis with the analysis of structural changes in ribosome by chemical modification technique (chemical probing). The most studied structural transformations of the ribosome interacting with tRNAs and elongation factors are considered in this review. The structural rearrangements are discussed in the context of interactions between the functional centers of the ribosome. We also describe the system of tertiary contacts between the rRNA helices and proteins which forms the universal structure in the ribosome. We pay attention that by means of such system the allosteric conformational signal can be transmitted between the functional centers. Besides the discussion of different biochemical data in the scope of structural data we also consider the hypothesis that the position of GTPase associated center (GAC) in the ribosome regulates the binding of elongation factors.  相似文献   

2.
Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge.  相似文献   

3.
Ribosomal proteins in the spotlight   总被引:1,自引:0,他引:1  
The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.  相似文献   

4.
The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring ribozymes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.  相似文献   

5.
Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1, 2, 3, 4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5, 6, 7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9).  相似文献   

6.
ABSTRACT

The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.  相似文献   

7.
ABSTRACT

The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring riboyzmes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.  相似文献   

8.
5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.  相似文献   

9.
Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly.  相似文献   

10.
Plastid translation occurs on bacterial-type 70S ribosomes consisting of a large (50S) subunit and a small (30S) subunit. The vast majority of plastid ribosomal proteins have orthologs in bacteria. In addition, plastids also possess a small set of unique ribosomal proteins, so-called plastid-specific ribosomal proteins (PSRPs). The functions of these PSRPs are unknown, but, based on structural studies, it has been proposed that they may represent accessory proteins involved in translational regulation. Here we have investigated the functions of five PSRPs using reverse genetics in the model plant Arabidopsis thaliana. By analyzing T-DNA insertion mutants and RNAi lines, we show that three PSRPs display characteristics of genuine ribosomal proteins, in that down-regulation of their expression led to decreased accumulation of the 30S or 50S subunit of the plastid ribosomes, resulting in plastid translational deficiency. In contrast, two other PSRPs can be knocked out without visible or measurable phenotypic consequences. Our data suggest that PSRPs fall into two types: (i) PSRPs that have a structural role in the ribosome and are bona fide ribosomal proteins, and (ii) non-essential PSRPs that are not required for stable ribosome accumulation and translation under standard greenhouse conditions.  相似文献   

11.
Ribosomes are intracellular organelles ubiquitous in all organisms, which translate information from mRNAs to synthesize proteins. They are complex macromolecules composed of dozens of proteins and ribosomal RNAs. Other than translation, some ribosomal proteins also have side‐jobs called “Moonlighting” function. The majority of these moonlighting functions influence cancer progression, early development and differentiation. Recently, we discovered that ribosome is involved in the regulation of cellular transdifferentiation of human dermal fibroblasts (HDFs). In vitro incorporation of ribosomes into HDFs arrests cell proliferation and induces the formation of cell clusters, that differentiate into three germ layer derived cells upon induction by differentiation mediums. The discovery of ribosome induced transdifferentiation, that is not based on genetic modification, find new possibilities for the treatment of cancer and congenital diseases, as well as to understand early development and cellular lineage differentiation.  相似文献   

12.
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.  相似文献   

13.
The presence of CTC family proteins is a unique feature of bacterial cells. In the CTC family, there are true ribosomal proteins (found in ribosomes of exponentially growing cells), and at the same time there are also proteins temporarily associated with the ribosome (they are produced by the cells under stress only and incorporate into the ribosome). One feature is common for these proteins — they specifically bind to 5S rRNA. In this review, the history of investigations of the best known representatives of this family is described briefly. Structural organization of the CTC family proteins and their occurrence among known taxonomic bacterial groups are discussed. Structural features of 5S rRNA and CTC protein are described that predetermine their specific interaction. Taking into account the position of a CTC protein and its intermolecular contacts in the ribosome, a possible role of its complex with 5S rRNA in ribosome functioning is discussed.  相似文献   

14.
《BBA》2020,1861(11):148275
Why mitochondria still retain their own genome is a puzzle given the enormous effort to maintain a mitochondrial translation machinery. Most mitochondrially encoded proteins are membrane-embedded subunits of the respiratory chain. Their hydrophobicity presumably impedes their import into mitochondria. However, many mitochondrial genomes also encode protein subunits of the mitochondrial ribosome. These proteins lack transmembrane domains and hydrophobicity cannot explain why their genes remained in mitochondria. In this review, we provide an overview about mitochondrially encoded subunits of mitochondrial ribosomes of fungi, plants and protists. Moreover, we discuss and evaluate different hypotheses which were put forward to explain why (ribosomal) proteins remained mitochondrially encoded. It seems likely that the synthesis of ribosomal proteins in the mitochondrial matrix is used to regulate the assembly of the mitochondrial ribosome within mitochondria and to avoid problems that mitochondrial proteins might pose for cytosolic proteostasis and for the assembly of cytosolic ribosomes.  相似文献   

15.
This review is devoted to substantiation of new characteristics for classification of living organisms. The novel view of a role of flexible regions in protein functioning and evolution is suggested. It is based on the newly revealed correlation between the number of loops in elongation factors and the complexity of organisms. This correlation allowed us to formulate a hypothesis of evolution of this protein family. In addition, the study of the ribosomal protein S1 family made it possible to consider the number of structural domains as a reliable indicator of a microorganism’s affiliation with a particular division and to judge about “direction” of their evolution. The findings allow us to consider the loops and repeats in these proteins as unique imprints of molecular evolution.  相似文献   

16.
Modification of yeast ribosomal proteins. Phosphorylation.   总被引:2,自引:0,他引:2       下载免费PDF全文
Two-dimensional polyacrylamide-gel electrophoretic analysis of yeast ribosomal proteins labelled in vivo with 32PO43- revealed that the proteins S2 and S10 of the 40S ribosomal subunit, and the proteins L9, L30, L44 and L45 of the 60S ribosomal subunit, are phosphorylated in vivo. Most of the phosphate groups appeared to be linked to serine residues. Teh number of phosphate groups per molecule of phosphorylated protein species ranged from 0.01 to 0.79. Since most of the phosphorylated ribosomal proteins appear to associate with the pre-ribosomal particles at a very late stage of ribosome assembly, phosphorylation is more likely to play a role in the functioning of the ribosome than in its assembly.  相似文献   

17.
Ribosomal functions are vital for all organisms. Bacterial ribosomes are stable 2.4 MDa particles composed of three RNAs and over 50 different proteins. Accumulating damage to ribosomal RNA or proteins can disturb ribosome functioning. Organisms could benefit from degrading or possibly repairing inactive or partially active ribosomes. Reactivation of chemically damaged ribosomes by a process of protein replacement was studied in vitro. Ribosomes were inactivated by chemical modification of Cys residues. Incubation of modified ribosomes with total ribosomal proteins led to reactivation of translational activity. Intriguingly, ribosomal proteins extracted by LiCl are equally active in the restoration of ribosome function. Incubation of 70S ribosomes with isotopically labelled r‐proteins followed by separation of ribosomes was used to identify exchangeable proteins. A similar set of proteins was found to be exchanged in vivo under stress conditions in the stationary phase. We propose that repair of damaged ribosomes might be an important mechanism for maintaining protein synthesis activity following chemical damage.  相似文献   

18.
The key reaction of protein synthesis, peptidyl transfer, is catalysed in all living organisms by the ribosome - an advanced and highly efficient molecular machine. During the last decade extensive X-ray crystallographic and NMR studies of the three-dimensional structure of ribosomal proteins, ribosomal RNA components and their complexes with ribosomal proteins, and of several translation factors in different functional states have taken us to a new level of understanding of the mechanism of function of the protein synthesis machinery. Among the new remarkable features revealed by structural studies, is the mimicry of the tRNA molecule by elongation factor G, ribosomal recycling factor and the eukaryotic release factor 1. Several other translation factors, for which three-dimensional structures are not yet known, are also expected to show some form of tRNA mimicry. The efforts of several crystallographic and biochemical groups have resulted in the determination by X-ray crystallography of the structures of the 30S and 50S subunits at moderate resolution, and of the structure of the 70S subunit both by X-ray crystallography and cryo-electron microscopy (EM). In addition, low resolution cryo-EM models of the ribosome with different translation factors and tRNA have been obtained. The new ribosomal models allowed for the first time a clear identification of the functional centres of the ribosome and of the binding sites for tRNA and ribosomal proteins with known three-dimensional structure. The new structural data have opened a way for the design of new experiments aimed at deeper understanding at an atomic level of the dynamics of the system.  相似文献   

19.
20.
A number of novel observations on ribosomal metabolism were made during gametic differentiation of Chlamydomonas reinhardi. Throughout the gametogenic process the amount of chloroplast and cytoplasmic ribosomes decreased steadily. The kinetics and extent of such decreases were different for each of the two ribosomal species. Comparable rRNA degradation accompanied this ribosome degradation. Concurrent with the substantial ribosome degradation was the synthesis of rRNA, ribosomal proteins and the assembly of new chloroplast and cytoplasmic ribosomes throughout gametogenesis. The newly synthesized chloroplast ribosomes exhibited distinctively faster turnover than their cytoplasmic counterpart. Cytoplasmic ribosomes, pulse-labeled in early gametogenic stages, retained label until differentiation was nearly complete even though a net decrease in the level of cytoplasmic ribosomes continued, indicating that the newly synthesized cytoplasmic ribosomes were preferentially retained during differentiation. Hence the regulation of ribosome metabolism during gametogenesis contrasts with the conservation of ribosomes obtained during vegetative growth of C. reinhardi and other organisms. This unique pattern of ribosome metabolism suggests that new ribosome synthesis is necessary during gametogenesis and that some specific structural or functional difference relating to the development stage of the life cycle might exist between degraded and newly synthesized ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号