首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Diuriagin NM 《Biofizika》2012,57(2):377-382
Biological models of osseous tissue and periosteum have been developed. Biocompatible materials from titaniumnickel as an organic part of implant - tissue composites have been already functioning for five years, replacing injured osteal fragments. The defects of skeletal kinematic sections of the mandible of experiment animals were replaced by biomechanical models of implant - tissue composites of the osseous tissue and periosteum. The composites were formed by joining the models of extracellular matrices of osseous tissue and periosteum and natural tissues. The validity of methodological propositions and optimum technological solutions have been proved by the absence of life-time signs of biochemical, biomechanical, hysteresis, and thermodynamic incompatibility on tissue and skeletal levels.  相似文献   

2.
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young’s modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.  相似文献   

3.
The presence of periosteum has been hypothesized to adversely affect halo pin penetration and performance (Voor, 1992. Ph.D. Dissertation, Tulane University, New Orleans, LA). However, biomechanical testing of halo pins has historically been conducted on bone specimens with periosteum removed. This may have lead to an unrealistic measure of biomechanical pin performance. Our study compares the biomechanical performance of two halo pin designs on bovine bone specimens with, and without, intact periosteum. The two pin designs included in this study were the conventional pin (Bremer Medical) with conical tip, and a newly released trochar-style pin (DePuy AcroMed). Results showed the mean peak load before failure of the trochar-style pin (mean +/- 95% confidence interval: 656+/-29 N) to be significantly higher than the conventional pin (517+/-53 N) on bone with intact periosteum (p = 0.001). With the periosteum removed, the mean peak load of the trochar-style pin (655+/-99 N) remained statistically the same (p = 0.987), while the mean peak load of the conventional pin (634+/-65 N) increased significantly (p = 0.026). Variation of the data of the conventional pin significantly decreased from 32 to 19% on removal of periosteum (sigma = 165-103 N, respectively, p = 0.0967), while variation of the trochar-style remained statistically the same at 30-29% (sigma = 193-188 N, respectively, p = 0.954). These results show that the trochar-style pin may be biomechanically superior to the conventional pin for vertical forces experienced during immobilization. The performance of this new pin style may also not be significantly affected by overlying soft tissue. Use of this new pin style may, therefore, improve overall stability and fixation of the halo apparatus.  相似文献   

4.
The paper is concerned with roentgenological characterization of mono- and poly-osseous fibrous dysplasia in cranial facial bones of 60 persons of both sexes and at a different age, of them 14 persons were under 14. Mono-osseous lesions after radical operations were shown to be capable of continued growth of rearranged osseous tissue in those cases when the periosteum was not completely removed.  相似文献   

5.
The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP) to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial) and trends (temporal) of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based on the mechanosensitivity of periosteal progenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico and to elucidate conditions conducive to endogenous tissue genesis. Next generation models will serve to unravel intrinsic differences in bone genesis by endochondral and intramembranous mechanisms.  相似文献   

6.
7.
Abstract

The success of dental implant treatment depends on the healing of both hard and soft tissues. While osseointegration provides initial success, the biological seal of the peri-implant soft tissue is crucial for maintaining the long term success of implants. Most studies of the biological seal of peri-implant tissues are based on animal or monolayer cell culture models. To understand the mechanisms of soft tissue attachment and the factors affecting the integrity of the soft tissue around the implants, it is essential to obtain good quality histological sections for microscopic examination. The nature of the specimens, however, which consist of both metal implant and soft peri-implant tissues, poses difficulties in preparing the specimens for histomorphometric analysis of the implant-soft tissue interface. We review various methods that have been used for the implant-tissue interface investigation with particular focus on the soft tissue. The different methods are classified and the advantages and limitations of the different techniques are highlighted.  相似文献   

8.
Rheumatoid arthritis "in the buff": erosive arthritis in defleshed bones   总被引:1,自引:0,他引:1  
Examination of isolated bones from patients with unequivocal rheumatoid arthritis provides only a glimpse of the disease but has been the only "gold standard" for recognition of osseous lesions as compatible with the diagnosis of rheumatoid arthritis. Documentation of skeletal pathologic changes in confidently diagnosed individuals has been a major missing link in the transition from clinical to skeletal analysis. Availability of appropriate skeletal material from two patients with long-standing, well-documented rheumatoid arthritis provided the opportunity for acquiring such information. The osseous appearance, skeletal distribution, and distinguishing features of rheumatoid arthritis "in the buff" were delineated in two contemporary patients and in a skeletal population of 2,906 individuals. The preconceived notion of anticipated severity of disease has hereby been tested and found wanting. Severe lesions are not recognizable or distinguishable from artifact in relatively fragile rheumatoid arthritis-affected bones, whether freshly prepared or remotely sampled. Characterization of the nature and epidemiology of osseous alterations in two contemporary skeletal populations permitted the development of a standard for recognition of the disease in skeletal populations.  相似文献   

9.
The past two decades have seen a proliferation in bioarchaeological literature on the identification of scurvy, a disease caused by chronic vitamin C deficiency, in ancient human remains. This condition is one of the few nutritional deficiencies that can result in diagnostic osseous lesions. Scurvy is associated with low dietary diversity and its identification in human skeletal remains can provide important contextual information on subsistence strategy, resource allocation, and human-environmental interactions in past populations. A large and robust methodological body of work on the paleopathology of scurvy exists. However, the diagnostic criteria for this disease employed by bioarchaeologists have not always been uniform. Here we draw from previous research on the skeletal manifestations of scurvy in adult and juvenile human skeletal remains and propose a weighted diagnostic system for its identification that takes into account the pathophysiology of the disease, soft tissue anatomy, and clinical research. Using a sample of individuals from the prehistoric Atacama Desert in Northern Chile, we also provide a practical example of how diagnostic value might be assigned to skeletal lesions of the disease that have not been previously described in the literature.  相似文献   

10.
Tissue collection methods for antler research   总被引:13,自引:0,他引:13  
The rapid growth of deer antlers makes them potentially excellent models for studying tissue regeneration. In order to facilitate this, we have developed and refined antler tissue sampling methods through years of antler research. In the study, antler tissues were divided into three main groups: antler stem tissue, antler blastema and antler growth centre. For sampling stem tissue, entire initial antlerogenic periosteum (around 22 mm in diameter) could be readily peeled off from the underlying bone using a pair of rat-toothed forceps after delineating the boundary. Apical and peripheral periosteum/ perichondrium of pedicle and antler could only be peeled off intact when they were cut into 4 quadrants and 0.5 cm-wide strips respectively. Antler blastema included blastema per se, and potentiated and dormant periostea. Blastema per se was sampled after it was divided into 4 quadrants using a disposable microtome blade. Potentiated and dormant periostea were collected following the same method used for sampling peripheral periosteum of pedicle and antler. The antler growth centre was divided with a scalpel into 5 layers according to distinctive morphological markers. The apical skin layer could be further separated into dermis and epidermis using enzyme digestion for the study of tissue interaction. We believe that the application of modern techniques coupled with the tissue collection methods reported here will greatly facilitate the establishment of these valuable models.  相似文献   

11.
The present study was performed (1) to explore the mechanism of skeletal healing following distraction osteogenesis of the mandible and to evaluate whether the same process is involved following acute mandibular resection and rigid external fixation, and (2) to examine the role of the periosteum in skeletal healing in both models. The study was performed using 16 mongrel dogs divided into two equal groups. In the first group, distraction of 20 mm was performed at a rate of 1 mm/day. In the second group, bone resection of 20 mm was performed, followed by rigid external fixation. The buccal periosteum was stripped in four dogs from each group, and the periosteum was left intact in the remaining four dogs. Dogs were euthanized after a survival period of either 2 or 3 months, and the new bone regenerate was evaluated. Analysis consisted of three-dimensional computed tomography scanning, histometric analysis, and immunostaining. Analysis of bone mineral content in the residual gap was conducted. Bone mineral content was increased in 3- versus 2-month survival for all groups (p < 0.05). The distracted groups had greater bone mineral content than their acutely resected counterparts, with the difference achieving statistical significance by 3-month survival (p < 0.05). Although periosteal preservation resulted in increased bone mineral content over time for all groups (p = 0.044), periosteal preservation had no significant effect on bone mineral content in the distracted groups. After periosteal stripping, however, bone mineral content was significantly increased in dogs that underwent distraction rather than acute resection and rigid external fixation (p = 0.022). Regarding histometric analysis, analysis of fibrous tissue content in the bone regenerate demonstrated that by 3 months the distracted groups had significantly less fibrous tissue in the new bone regenerate than did the acutely resected groups (p < 0.001). Regarding immunostaining, diffuse localization of transforming growth factor-beta1 was observed in all groups at 2 months, returning to nearly baseline levels by 3 months. These data demonstrate that significant bone formation in a segmental gap can be achieved after acute mandibular resection and rigid external fixation if the periosteum is preserved. However, after periosteal injury or stripping, significant bone formation can only be achieved by distraction osteogenesis. In both processes, bone formation is preceded by up-regulation of transforming growth factor-beta1.  相似文献   

12.
By means of light optic and electron microscopy (SAM, TAM) histoconstruction of the connective tissue structures of the human skeletal muscles have been investigated and its analysis has been performed from biomechanical point of view. Fibrillar elements of the connective tissue are demonstrated to play an important role in structural adaptation of the skeletal muscle, as the organ, performing certain mechanical functions. The data obtained makes it possible to formulate the state, that the fibrillar network of the connective tissue is a polyfunctional system, that ensures integration of the structural elements of the muscle, transmission of mechanical strains, is the carcass of the organ and participates in formation of its buffer and amortizational mechanisms. The integration mechanisms of the main functional elements of the muscle belly, tendons and fascia to a great extent are of a unification character.  相似文献   

13.
Developing cartilaginous and ossified skeletal anlagen is encapsulated within a membranous sheath of flattened, elongated cells called, respectively, the perichondrium and the periosteum. These periskeletal tissues are organized in distinct morphological layers that have been proposed to support distinct functions. Classical experiments, particularly those using an in vitro organ culture system, demonstrated that these tissues play important roles in regulating the differentiation of the subjacent skeletal elements. However, there has been a lack of molecular markers that would allow analysis of these interactions. To understand the molecular bases for the roles played by the periskeletal tissues, we generated microarrays from perichondrium and periosteum cDNA libraries and used them to compare the gene expression profiles of these two tissues. In situ hybridization analysis of genes identified on the microarrays revealed many unique markers for these tissues and demonstrated that the histologically distinct layers of the perichondrium and periosteum are associated with distinct molecular expression domains. Moreover our marker analysis identified new domains that had not been previously recognized as distinct within these tissues as well as a previously uncharacterized molecular domain along the lateral edges of the adjacent developing cartilage that experimental analysis showed to be dependent upon the perichondrium.  相似文献   

14.
Understanding of tibiofemoral joint mechanics at multiple spatial scales is essential for developing effective preventive measures and treatments for both pathology and injury management. Currently, there is a distinct lack of specimen-specific biomechanical data at multiple spatial scales, e.g., joint, tissue, and cell scales. Comprehensive multiscale data may improve the understanding of the relationship between biomechanical and anatomical markers across various scales. Furthermore, specimen-specific multiscale data for the tibiofemoral joint may assist development and validation of specimen-specific computational models that may be useful for more thorough analyses of the biomechanical behavior of the joint. This study describes an aggregation of procedures for acquisition of multiscale anatomical and biomechanical data for the tibiofemoral joint. Magnetic resonance imaging was used to acquire anatomical morphology at the joint scale. A robotic testing system was used to quantify joint level biomechanical response under various loading scenarios. Tissue level material properties were obtained from the same specimen for the femoral and tibial articular cartilage, medial and lateral menisci, anterior and posterior cruciate ligaments, and medial and lateral collateral ligaments. Histology data were also obtained for all tissue types to measure specimen-specific cell scale information, e.g., cellular distribution. This study is the first of its kind to establish a comprehensive multiscale data set for a musculoskeletal joint and the presented data collection approach can be used as a general template to guide acquisition of specimen-specific comprehensive multiscale data for musculoskeletal joints.  相似文献   

15.
A technique is presented for processing implanted biomaterials with surrounding soft tissue for histological assessment of the implant-tissue interaction. Specimens are removed with the implant-tissue interface intact, fixed in formalin, dehydrated in a graded series of ethanol followed by a graded series of acetone in ethanol, and embedded in Spurr's low viscosity epoxy resin. Sections 0.5-1.0 mm thick are cut from the cured blocks using a metallurigical saw with a diamond wafer blade. After being glued to glass microscope slides, they are ground and polished to approximately 75 microns in thickness. The polished sections are treated with 95% ethanol saturated with sodium hydroxide, stained with Gill's hematoxylin and counterstained in eosin Y-phloxine B. The sodium hydroxide solution degrades the resin, allowing the stain to penetrate the tissue. By limiting the time in sodium hydroxide, the depth of staining is controlled and one is able to simulate a thin paraffin section with high resolution of the implant-soft tissue interface.  相似文献   

16.
17.
A number of mechano-regulation theories have been proposed that relate the differentiation pathway of mesenchymal stem cells (MSCs) to their local biomechanical environment. During spontaneous repair processes in skeletal tissues, the organisation of the extracellular matrix is a key determinant of its mechanical fitness. In this paper, we extend the mechano-regulation theory proposed by Prendergast et al. (J Biomech 30(6):539–548, 1997) to include the role of the mechanical environment on the collagen architecture in regenerating soft tissues. A large strain anisotropic poroelastic material model is used in a simulation of tissue differentiation in a fracture subject to cyclic bending (Cullinane et al. in J Orthop Res 20(3):579–586, 2002). The model predicts non-union with cartilage and fibrous tissue formation in the defect. Predicted collagen fibre angles, as determined by the principal decomposition of strain- and stress-type tensors, are similar to the architecture seen in native articular cartilage and neoarthroses induced by bending of mid-femoral defects in rats. Both stress and strain-based remodelling stimuli successfully predicted the general patterns of collagen fibre organisation observed in vivo. This provides further evidence that collagen organisation during tissue differentiation is determined by the mechanical environment. It is envisioned that such predictive models can play a key role in optimising MSC-based skeletal repair therapies where recapitulation of the normal tissue architecture is critical to successful repair.  相似文献   

18.
《Organogenesis》2013,9(1):23-27
Mesenchymal stem cells (MSCs) are of great interest to both clinicians and researchers for their great potential to enhance tissue engineering. Their ease of isolation, manipulability, and potential for differentiation are specifically what have made them so attractive. These multipotent cells have been found to differentiate into cartilage, bone, fat, muscle, tendon, skin, hematopoietic-supporting stroma and neural tissue. Their diverse in vivo distribution includes bone marrow, adipose, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, blood, trabecular bone, human umbilical cord, lung, dental pulp, and periodontal ligament. Despite their frequent use in research, no standardized criteria exist for the identification of mesenchymal stem cells; The International Society for Cellular Therapy has sought to change this with a set of guidelines elucidating the major surface markers found on these cells. While many studies have shown MSCs to be just as effective as unipotent cells for certain types of tissue regeneration, limitations do exist due to their immunosuppressive properties. This paper serves as a review pertaining to these issues, as well as others related to the use of MSCs in tissue engineering.  相似文献   

19.
All powered flying animals have to face the same energetic problems: operating the wings during steady flight with muscles that require constant energy input and neural control to work. Accordingly the extant flying vertebrates have apparently found very similar solutions to parts of these issues – the biomechanical automatism built in their skeletal, muscular and connective tissue system. Based on these extant analogues (birds and bats) two new models are presented here for the mechanism of the distal wing extension in pterosaurs, an extinct group of flying vertebrates. The elongate fourth finger which solely supported their extensive flight membrane was a long lever arm that experienced significant loads and for which a reduction in muscle mass through automatisation would have been strongly beneficial. In the first model we hypothesize the presence of a propatagial ligament or ligamentous system which, as a result of the elbow extension, automatically performs and maintains the extension of the wing finger during flight and prohibits the hyperextension of the elbow. The second model has a co-operating bird-like propatagial ligamentous system and bat-like tendinous extensor muscle system on the forearm of the hypothetical pterosaur. Both models provide strong benefits to an animal with powered flight: (1) reduction of muscles and weight in the distal wing; (2) prevention of hyper extension of the elbow against drag; (3) automating wing extension and thereby reducing metabolic costs required to operate the pterosaurian locomotor apparatus. These models, although hypothetical, fit with the existing fossil evidence and lay down a basis for further biomechanical and/or aerodynamical investigations.  相似文献   

20.
A technique is presented for processing implanted biomaterials with surrounding soft tissue for histological assessment of the implant-tissue interaction. Specimens are removed with the implant-tissue interface intact, fixed in formalin, dehydrated in a graded series of ethanol followed by a graded series of acetone in ethanol, and embedded in Spurr's low viscosity epoxy resin. Sections 0.5-1.0 mm thick are cut from the cured blocks using a metallurigical saw with a diamond wafer blade. After being glued to glass microscope slides, they are ground and polished to approximately 75 µm in thickness. The polished sections are treated with 95% ethanol saturated with sodium hydroxide, stained with Gill's hematoxylin and counterstained in eosin Y-phloxine B. The sodium hydroxide solution degrades the resin, allowing the stain to penetrate the tissue. By limiting the time in sodium hydroxide, the depth of staining is controlled and one is able to simulate a thin paraffin section with high resolution of the imnlant—soft tissue interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号