共查询到20条相似文献,搜索用时 0 毫秒
1.
Scaling of the process of biosynthesis of surfactants by Rhodococcus erythropolis EK-1 on hexadecane
Peculiarities of synthesis of surface-active substances (SAS) are studied at periodical cultivation of Rhodococcus erythropolis EK-1 in the AK-210 fermenter on medium containing n-hexadecane. Maximum indicators of SAS synthesis (concentration of extra cellular SAS is 7.2 g/l; factor of emulsification of the cultural liquid 50%; SAS yield from the substrate 50%) have been observed at 60-70% concentration of dissolved oxygen from the saturation level with aerial oxygen (pH 8.0) fractional supply of the substrate by portions each being 0.3-0.4% every 5-6 h to a final volume concentration of 2.4% and with the use of 10% inoculate grown until mid-exponential phase on the medium with 1.0 vol % of n-hexadecane. Implementation of the process of SAS biosynthesis with the fermentation equipment provided the possibility to increase almost two-fold the amount of the synthesized SAS and reduce 3.5-fold the time of cultivation of the producer strain compared with the growth in flasks at shake-flask propagator. 相似文献
2.
Production of Surfactants by Rhodococcus erythropolis Strain EK-1, Grown on Hydrophilic and Hydrophobic Substrates 总被引:3,自引:0,他引:3
Pirog T. P. Shevchuk T. A. Voloshina I. N. Karpenko E. V. 《Applied Biochemistry and Microbiology》2004,40(5):470-475
The ability of Rhodococcus erythropolis strain EK-1 to produce surfactants when grown on hydrophilic (ethanol and glucose) and hydrophobic (liquid paraffins and hexadecane) substrates was studied. The strain was found to produce surfactants with emulsifying and surface-active properties. The production of surfactants depended on the composition of the nutritive medium, nature and concentration of the sources of carbon and nitrogen, and duration of cultivation. Chemically, surfactants produced by Rhodococcus erythropolis EK-1 grown on ethanol are a complex of lipids with polysaccharide–proteinaceous substances. The lipids include glycolipids (trehalose mono- and dicorynomycolates) and common lipids (cetyl alcohol, palmitic acid, methyl n-pentadecanoate, triglycerides, and mycolic acids). 相似文献
3.
Activity of key enzymes of n-alkane metabolism was determined in cells of Rhodococcus erythropolis EK-1, a surfactant producer grown on n-hexadecane. Potassium cations were found to inhibit alkane hydroxylase and NADP(+)-dependent aldehyde dehydrogenase, while sodium cations were found to activate these enzymes. Decreased potassium concentration (to 1 mM), increased sodium concentration (to 35 mM), and addition of 36 micromol/l Fe(II), required for alkane hydroxylase activity, resulted in increased activity of the enzymes of n-hexadecane metabolism and in a fourfold increase of surfactant synthesis. A 1.5-1.7-fold increase in surfactant concentration after addition of 0.2% fumarate (gluconeogenesis precursor) and 0.1% citrate (lipid synthesis regulator) to the medium with n-hexadecane results from enhanced synthesis of trehalose mycolates, as evidenced by a 3-5-fold increase in phosphoenolpyruvate synthetase and trehalose phosphate synthase, respectively. 相似文献
4.
《Bioscience, biotechnology, and biochemistry》2013,77(2):428-429
Rhodococcus erythropolis strain S-1, which was isolated from soil, produces a bioflocculant. We have found that alcohols are useful carbon sources for its flocculant production. Ethanol was best for flocculant production and culture time. The bioflocculant produced on ethanol medium flocculated a wide range of suspended soils, alkaline and acid. 相似文献
5.
Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources
It has been shown that the Rhodococcus erythropolis sH-5 strain can produce surfactants associated and not associated with the cell wall. Their content depends on medium composition, the nature of the carbon source, and oxygen supply. The highest biosurfactant (bioSF) yield is achieved by growing R. erythropolis sH-5 in medium with 2% kerosene at neutral pH. It has been found that the bioSF yield and emulsification index for various hydrocarbons depend on the kind of the nitrogen source used by the bacterium, increasing with replacement of KNO3 by NaNO3. The yields of biomass and bioSF in R. erythropolis depend on growth temperatures (max at 30 degrees C) but not on water quality (bidistillate, catholyte, or anolyte). It has been found that sH-5 produces more cell-associated bioSF than extracellular species. 相似文献
6.
The dsz desulfurization gene cluster from Rhodococcus erythropolis strain KA2-5-1 was transferred into R. erythropolis strain MC1109, unable to desulfurize light gas oil (LGO), using a transposon-transposase complex. As a result, two recombinant strains, named MC0203 and MC0122, were isolated. Resting cells of strain MC0203 decreased the sulfur concentration of LGO from 120 mg l–1 to 70 mg l–1 in 2 h. The LGO-desulfurization activity of strain MC0203 was about twice that of strain MC0122 and KA2-5-1. The 10-methyl fatty acids of strain MC0203 were about 28%–41% that of strain MC1109. It is likely that strain MC0203 had a mutation involving alkylenation or methylation of 9-unsaturated fatty acids caused by the transposon inserted in the chromosome, which increased the fluidity of cell membranes and enhanced the desulfurization activity. 相似文献
7.
Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources
It has been shown that the Rhodococcus erythropolis sH-5 strain can produce surfactants associated and not associated with the cell wall. Their content depends on medium composition, the nature of the carbon source, and oxygen supply. The highest biosurfactant (bioSF) yield is achieved by growing R. erythropolis sH-5 in medium with 2% kerosene at neutral pH. It has been found that the bioSF yield and emulsification index for various hydrocarbons depend on the kind of the nitrogen source used by the bacterium, increasing with replacement of KNO3 by NaNO3. The yields of biomass and bioSF in R. erythropolis depend on growth temperatures (max at 30°C) but not on water quality (bidistillate, catholyte, or anolyte). It has been found that sH-5 produces more cell-associated bioSF than extracellular species. 相似文献
8.
Selective Desulfurization of Dibenzothiophene by Rhodococcus erythropolis D-1 总被引:11,自引:0,他引:11 下载免费PDF全文
Yoshikazu Izumi Takashi Ohshiro Hiroshi Ogino Yoshimitsu Hine Masayuki Shimao 《Applied microbiology》1994,60(1):223-226
A dibenzothiophene (DBT)-degrading bacterium, Rhodococcus erythropolis D-1, which utilized DBT as a sole source of sulfur, was isolated from soil. DBT was metabolized to 2-hydroxybiphenyl (2-HBP) by the strain, and 2-HBP was almost stoichiometrically accumulated as the dead-end metabolite of DBT degradation. DBT degradation by this strain was shown to proceed as DBT → DBT sulfone → 2-HBP. DBT at an initial concentration of 0.125 mM was completely degraded within 2 days of cultivation. DBT at up to 2.2 mM was rapidly degraded by resting cells within only 150 min. It was thought this strain had a higher DBT-desulfurizing ability than other microorganisms reported previously. 相似文献
9.
10.
11.
Peculiarities of synthesis of surface-active substances (SAS) are studied at periodical cultivation of Rhodococcus erythropolis EK-1 in the AK-210 fermenter on medium containing n-hexadecane. Maximum indicators of SAS synthesis (concentration of extra cellular SAS is 7.2 g/l; factor of emulsification of the cultural liquid 50%; SAS yield from the substrate 50%) have been observed at 60–70% concentration of dissolved oxygen from the saturation level with aerial oxygen (pH 8.0) fractional supply of the substrate by portions each being 0.3–0.4% every 5–6 h to a final volume concentration of 2.4% and with the use of 10% inoculate grown until mid-exponential phase on the medium with 1.0 vol % of n-hexadecane. Implementation of the process of SAS biosynthesis with the fermentation equipment provided the possibility to increase almost two-fold the amount of the synthesized SAS and reduce 3.5-fold the time of cultivation of the producer strain compared with the growth in flasks at shake-flask propagator. 相似文献
12.
Abstract During utilization of compounds containing methyl groups, the non-methylotrophic bacteria Rhodococcus erythropolis oxidized the methyl groups entirely to carbon dioxide. This oxidation was linked to the presence of an NAD-dependent formaldehyde dehydrogenase activity which was lost on dialysis. The activity could be restored by the addition of boiled extract but not by adding the known cofactors glutathione or tetrahydrofolate.
A further dehydrogenase activity with formaldehyde as substrate was found in ethanolgrown cells. This activity could be differentiated from that in methyl group metabolizing cells. 相似文献
A further dehydrogenase activity with formaldehyde as substrate was found in ethanolgrown cells. This activity could be differentiated from that in methyl group metabolizing cells. 相似文献
13.
Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain 总被引:1,自引:0,他引:1
The soil-isolated strain XP was identified as Rhodococcus erythropolis. R. erythropolis XP could efficiently desulfurize benzonaphthothiophene, a complicated model sulfur compound that exists in crude oil. The desulfurization product of benzonaphthothiophene was identified as alpha-hydroxy-beta-phenyl-naphthalene. Resting cells could desulfurize diesel oil (total organic sulfur, 259 ppm) after hydrodesulfurization. The sulfur content of diesel oil was reduced by 94.5% by using the resting cell biocatalyst for 24 h at 30 degrees C. Biodesulfurization of crude oils was also investigated. After 72 h of treatment at 30 degrees C, 62.3% of the total sulfur content in Fushun crude oil (initial total sulfur content, 3,210 ppm) and 47.2% of that in Sudanese crude oil (initial total sulfur, 1,237 ppm) were removed. Gas chromatography with pulsed-flame photometric detector analysis was used to evaluate the effect of R. erythropolis XP treatment on the sulfur content in Fushun crude oil, and it was shown that most organic sulfur compounds were eliminated after biodesulfurization. 相似文献
14.
A Gram-positive Rhodococcus erythropolis strain S1 was shown to assimilate aromatic amino acids such as L-phenylalanine, L-tyrosine, L-tryptophan, D-phenylalanine, D-tyrosine and D-tryptophan, which were utilized not only as the sole carbon source but also as a suitable nitrogen source. The highest growth on these aromatic amino acids occurred at a temperature of 30°C. L-Phenylalanine, L-tyrosine and L-tryptophan degradative pathways would appear to be independent, and to be induced alternatively. The strain S1 also showed the ability to assimilate peptides which consisted of only L-phenylalanine and L-tyrosine. 相似文献
15.
Tomasz Płociniczak Ewa Fic Magdalena Pacwa-Płociniczak Małgorzata Pawlik Zofia Piotrowska-Seget 《International journal of phytoremediation》2017,19(7):614-620
The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments.
The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons. 相似文献
16.
A. Hidalgo A. Lopategi M. Prieto J. Serra M. Llama 《Applied microbiology and biotechnology》2002,58(2):260-264
17.
Hidalgo A Lopategi A Prieto M Serra JL Llama MJ 《Applied microbiology and biotechnology》2002,58(2):260-263
Rhodococcus erythropolis strain UPV-1 is able to grow on phenol as the only carbon and energy source and to remove formaldehyde completely from both synthetic and industrial wastewater. The rate of formaldehyde removal is independent of either initial biomass or formaldehyde concentration. The presence of viable, intact cells is strictly necessary for this removal to take place. Discontinuous and continuous formaldehyde-feed systems were successfully tested with synthetic wastewater in shaken flasks. Once biodegradation was well established in model synthetic wastewater, a real wastewater sample was obtained from a local phenolic and melamine resin-manufacturing company. Incubation of biomass with this wastewater at subtoxic concentrations of formaldehyde resulted in the complete removal of the pollutant. Parameters, such as chemical oxygen demand and toxicity, were assessed as indicators of wastewater cleanup progress. 相似文献
18.
Yu B Xu P Zhu S Cai X Wang Y Li L Li F Liu X Ma C 《Applied and environmental microbiology》2006,72(3):2235-2238
The carbazole dioxygenase genes were introduced into a dibenzothiophene degrader. The recombinant Rhodococcus erythropolis SN8 was capable of efficiently degrading dibenzothiophene and carbazole simultaneously. SN8 could also degrade various alkylated derivatives of carbazole and dibenzothiophene in FS4800 crude oil by just a one-step bioprocess. 相似文献
19.
Sekine M Tanikawa S Omata S Saito M Fujisawa T Tsukatani N Tajima T Sekigawa T Kosugi H Matsuo Y Nishiko R Imamura K Ito M Narita H Tago S Fujita N Harayama S 《Environmental microbiology》2006,8(2):334-346
Rhodococcus erythropolis strain PR4 has been isolated as an alkane-degrading bacterium. The strain harbours one linear plasmid, pREL1 (271 577 bp) and two circular plasmids, pREC1 (104 014 bp) and pREC2 (3637 bp), all with some sequence similarities to other Rhodococcus plasmids. For pREL1, pREC1 and pREC2, 298, 102 and 3 open reading frames, respectively, were predicted. Linear plasmid pREL1 has several regions homologous to plasmid pBD2 found in R. erythropolis BD2. Sequence analysis of pREL1 and pBD2 identified common metal-resistance genes on both, but pREL1 also encodes alkane-degradation genes not found on pBD2, with enzyme constituents some of which are quite different from those of other organisms. The alkane hydroxylase consisted of a cytochrome P450 monooxygenase, a 2Fe-2S ferredoxin, and a ferredoxin reductase. The ferredoxin reductase amino acid sequence resembles the AlkT (rubredoxin reductase) sequence. A zinc-containing alcohol dehydrogenase further oxydizes alkanols, alkane oxidation products catalysed by alkane hydroxylase. Of the circular plasmids, the pREC1 sequence is partially similar to the sequence of pREAT701, the virulence plasmid found in Rhodococcus equi. pREC1 has no pREAT701 virulence genes and encodes genes for beta-oxidation of fatty acids. Thus, joint actions of enzymes encoded by pREL1 and pREC1 may enable efficient mineralization of alkanes. 相似文献
20.
A. Suemori K. Nakajima R. Kurane Y. Nakamura 《Applied microbiology and biotechnology》1995,43(3):470-472
Gram-positive Rhodococcus erythropolis strain S1 formed enzymes for the degradation of phthalate when grown in a phthalate-containing minimal medium. The membrane
fraction prepared from phthalate-grown cells by ultrasonication converted phthalate to protocatechuate as the final product.
Using two membrane-bound enzymes, phthalate 3,4-dioxygenase (PO) and 3,4-dihydro-3,4-dihydroxyphthalate 3,4-dehydrogenase
(PH), prepared by solubilization of the membrane fraction, 3,4-dihydroxyphthalate was selectively obtained from phthalata.
Fe2+ and Mn2+ stimulated the formation of 3,4-dihydroxyphthalate by the membrane-bound PO and PH system.
Received: 27 April 1994/Received last revision: 19 August 1994/Accepted: 12 September 1994 相似文献