首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Inhibitory photoperiod differentially effects reproduction in deer mice (Peromyscus maniculatus nebrascensis). Pituitary-testicular function is arrested in about one-third of short-day exposed males (reproductively responsive mice), while an equal number remain fertile (reproductively nonresponsive mice). Both phenotypes are found in natural populations and their disparate reproductive responses have a genetic basis. To assess whether this difference is attributable to a prepineal/pineal or post-pineal mechanism, we compared spermatogenic responses of known and unknown phenotype to exogenous melatonin. Melatonin significantly reduced mean sperm number in long-day housed mice of unknown phenotype. But, individual responses ranged from azoospermia to normal spermatogenesis, and this range was not significantly different from that previously recorded for short-day exposed mice. Reproductively nonresponsive males were unaffected by melatonin administration when housed under long or short daylength. In contrast, melatonin significantly suppressed sperm production in reproductively responsive males housed under long photoperiod, but had no additional suppressive effect in short-day housed mice with regressed testes. These data demonstrate that melatonin is only effective in eliciting testicular regression in reproductively responsive males. Taken together, these results suggest that differential testicular response to photoperiod are caused by a post-pineal mechanism.Abbreviations LD long day - SD short day - 16L:8D 16 h light, 8 h dark - 8L:16D 8 h light, 16 h dark  相似文献   

2.
In laboratory-bred rodent populations, intraspecific variation in circadian system organization is a known cause of individual variation in reproductive photoresponsiveness. The authors sought to determine whether circadian system variation accounted for individual variation in reproductive photoresponsiveness in a single, highly genetically variable population of Peromyscus leucopus recently derived from the wild. Running-wheel activity patterns of male and female mice, aged 70 to 90 days, from artificially selected lines of reproductively photoresponsive (R) and nonresponsive (NR) lines were monitored under short-day photoperiod (8 h light, 16 h dark), long-day photoperiod (16 h light, 8 h dark), and constant darkness (DD). NR mice displayed a significantly longer mean free-running period (24.08 h) in DD compared with R mice (23.75 h), due in large part to a difference between NR and R females (24.25 h vs. 23.74 h, respectively). All other entrainment characteristics (alpha, phase angle of activity) under short days, long days, and DD were similar between R and NR mice. Variation in free-running period and entrainment characteristics has been shown to affect photoresponsiveness in other rodent species by altering the manner in which the circadian system interprets short days. To determine whether variation in photoresponsiveness in P. leucopus is due to differences in free-running period instead of variation downstream from the central circadian clock in the pathway controlling photoresponsiveness, the authors exposed young R and NR mice to DD and measured the effect on reproductive organ development. If variation in free-running period affected how the circadian system of mice interpreted short days, then both R and NR mice exposed to DD should have exhibited a delay in gonadal development. Only R mice exhibited pubertal delay in DD. NR mice exhibited large paired testes, paired seminal vesicles, paired ovaries, and uterine weight typical of mice nonresponsive to short days, whereas R mice exhibited reproductive organ weight typical of mice responsive to short days. These data suggest that despite significant differences in free-running period between R and NR mice, individual variation in photoresponsiveness is not due to differences in how the circadian systems of R and NR mice interpret the LD cycle.  相似文献   

3.
1. Pineal N-acetyltransferase (NAT) activity in long-day white-footed mice (Peromyscus leucopus) exposed to cold soon after onset of darkness was depressed relative to controls, whereas mice exposed to cold later at night had slightly elevated enzyme activity. 2. NAT activity in short-day mice exposed to cold soon after lights off did not differ from controls. Pineal melatonin in these mice, however, did not rise, as it did in controls. 3. These results suggest that acute cold exposure may modulate NAT activity, which is controlled primarily by the L:D cycle.  相似文献   

4.
The pineal hormone melatonin influences circadian rhythms and also mediates reproductive responses to photoperiod. The authors tested whether pinealectomy influences circadian oscillators responsible for induction of nonresponsiveness to short day lengths by preventing normal short-day patterns of circadian entrainment. Adult male Siberian hamsters were pinealectomized or sham operated, maintained in either 18 h light per day (18L) or 15L for 10 weeks, and then tested for responsiveness to 10L. Because pinealectomized hamsters do not show gonadal regression in short day lengths, responsiveness was assessed by measuring phase angle of entrainment and the length of the nightly activity period following transfer to 10L. The incidence of nonresponsiveness was significantly higher in 18L hamsters than in 15L hamsters but was unaffected by pineal status. Fully 88% of 18L hamsters failed to entrain to 10L in the normal short-day manner; the duration of nightly activity remained compressed, and the phase angle of entrainment was large and negative relative to lights off. The 15L hamsters entrained normally to 10L. Exposure to constant light after 10L treatment was equally effective in inducing arrhythmicity in pinealectomized and intact hamsters. Changes in the period of morning and evening circadian oscillators subsequent to 18L treatment did not predict circadian responsiveness to short photoperiod. Long-day induction of photo-nonresponsiveness, which prevents winter responses to short day lengths, occurs independently of pineal melatonin feedback on the circadian system.  相似文献   

5.
Development of the reproductive apparatus was delayed in grasshopper mice maintained from birth in short photoperiods (10 h light/day). The inhibitory effects of short photoperiods on sexual maturation eventually waned and mice in 10L:14D became reproductively active. Adult mice transferred from long (14 h light/day) to short photoperiods underwent testicular regression after 10 weeks and complete gonadal redevelopment after 30 weeks. A similar phenomenon was observed in adult female mice; oestrous cycles ceased within 3 weeks and resumed after 13 weeks in the short photoperiod. The regressive effects of short photoperiods on the male reproductive system were mimicked by daily injections of melatonin administered to mice housed in 14L:10D. Responsiveness of the female reproductive system to melatonin was reduced among photorefractory as compared to photosensitive mice. We suggest that the initial rate of sexual maturation and the timing of seasonal breeding in adult mice are regulated by photoperiod; effects of short daylengths on the neuroendocrine-reproductive axis appear to be mediated by the pineal gland.  相似文献   

6.
Three subspecies of Peromyscus maniculatus originating from different latitudes were maintained from birth in light dark cycles that provided between 10 and 18 h of light per day. At 50 days of age, Chihuahua, Mexico mice (latitude of origin 27 degrees N) and South Dakota, U.S.A. mice (44 degrees N) kept in the 10L:14D photoperiod had reduced gonadal and seminal vesicle weights and a lower spermatogenic index than corresponding mice kept in a 14L:10D photoperiod. Some Chihuahua and South Dakota mice, apparently constituting nonphotoperiodic subpopulations, developed their gonads while kept in the short-day photoperiod. The critical day length for stimulation of sexual maturation was greater for mice from Manitoba, Canada (55 degrees N) than for mice from the lower latitudes. At 70 days of age, testes and seminal vesicle weights, and the spermatogenic index of Manitoba mice in the 14L:10D photoperiod, were lower than those of animals maintained in 16L:8D and 18L:6D photoperiods. Responsiveness to short day lengths was greater among adult South Dakota than adult Chihuahau mice and melatonin treatment significantly reduced testes weights of South Dakota but not of Chihuahua adult mice. Photoperiodic regulation of the reproductive system varies with latitude of origin. Differences in the critical day length necessary for stimulating development of functional reproductive activity and variations in the percent of photoperiodic animals within each subspecies, appear to contribute to latitudinal gradients in reproduction.  相似文献   

7.
The peroxidase-antiperoxidase method was used to determine quantitatively the effect of short photoperiod-induced gonadal regression on the immunoreactive gonadotropin-releasing hormone (GnRH) neuronal system of female Peromyscus leucopus. In mice exposed to either long (16L:8D) or short (8L:16D) photoperiod, immunoreactive cell bodies were loosely organized into six groups: olfactory peduncle, diagonal band of Broca, septum, preoptic area (POA), anterior hypothalamus (AH), and basal hypothalamus. The POA and AH contain the largest number of cell bodies, which supply the major GnRH innervation to the median eminence (ME) and several extrahypothalamic brain sites. Exposure to short photoperiod increased the number of immunoreactive cell bodies within the anterior hypothalamus and preoptic area (AHPOA) and also increased the optical density for staining of immunoreactive cell bodies in the AHPOA and olfactory peduncle. The ME of mice exposed to short photoperiod had a higher density of GnRH fibers relative to that of mice exposed to long photoperiod, and the content of GnRH fibers in the rostral ME was correlated with the optical content for immunostaining of cell bodies in the AHPOA. These results are evidence that gonadal regression induced by short photoperiod (mediated by the pineal gland) involves alterations of GnRH neuronal activity. Notably, data from this study are consistent with the hypothesis that suppressed release of GnRH from neurovascular terminals in the ME, rather than lack of availability of the decapeptide, promotes gonadal regression.  相似文献   

8.
Seasonal cycles in the size of the testes, blood plasma concentration of testosterone, FSH and prolactin, intensity of the sexual skin flush, timing of rutting behaviour and moulting of the body coat were recorded in Soay rams after s.c. implantation of melatonin contained in a Silastic envelope which increased the circulating blood levels of melatonin to 200-600 pg/ml for many months. Two groups of 8 adult rams were held under alternating periods of short days (8L:16D) and long days (16L:8D) to drive the seasonal cycles and the treatments with melatonin were initiated during the long or short days, and one group of 8 ram lambs was kept out of doors and given implants during the long days of summer (4 melatonin-implanted and 4 control (empty implants) rams per group). The treatments demonstrated that melatonin implants during exposure to long days resulted in a rapid 'switch on' of reproductive redevelopment similar to that produced by exposure to short days melatonin implants prevented the rams from showing the normal responses to changes in the prevailing photoperiod rendering them nonphotoperiodic; and long-term cyclic changes in testicular activity, prolactin secretion and other characteristics occurred in the melatonin-implanted rams; the pattern was similar to that previously observed in rams exposed to prolonged periods of short days. The overall results are consistent with the view that melatonin is the physiological hormone that relays the effects of changing photoperiod on reproduction and other seasonal features, and that continuous exogenous melatonin from an implant interferes with the normal 'signal' and produces an over-riding short-day response.  相似文献   

9.
1. The pineal melatonin content of photoperiod responsive and photoperiod non-responsive male deer mice was assessed. 2. Pineal melatonin content did not differ between short-day mice with regressed testes or those that maintained their reproductive systems. 3. These data suggest that differential phasing of melatonin release or post-pineal mechanisms are responsible for the differential responsiveness to day length among deer mice.  相似文献   

10.
The purpose of this study was to evaluate whether the insertion of a continuous-release melatonin implant into ewes provides a short-day photoperiodic signal or acts as a functional pinealectomy (provides no specific photoperiodic signal but renders ewes incapable of responding to changes in photoperiod). Ewes primed with 60 long days (18L:6D) during the spring were moved to intermediate day length (13L:11D) for 66 days and then given one of five treatments: 1) short-day control, second drop in photoperiod to 8L:16D; 2) intermediate-photoperiod control, kept on 13L:11D; 3) pinealectomy and kept on 13L:11D; 4) melatonin implant and kept on 13L:11D; 5) melatonin implant and moved to 8L:16D. Mean number of estrous cycles per group and total duration of reproductive activity were determined. Ewes in all groups began to exhibit estrous cycles after the initial reduction in photoperiod. The number of estrous cycles and duration of reproductive activity differed among groups. The number of estrous cycles and duration of reproductive activity was extended in ewes receiving the second drop in photoperiod compared to that of the intermediate-photoperiod controls. Pinealectomized ewes had a number of estrous cycles and duration of reproductive activity similar to those of ewes maintained on the intermediate photoperiod. Melatonin implants increased the number of estrous cycles and prolonged reproductive activity in ewes maintained on the intermediate photoperiod; melatonin implants did not prevent the extension of reproductive activity in ewes receiving the second photoperiodic drop to the short daylength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Photoperiodic influences on sexual behavior in male Syrian hamsters   总被引:1,自引:0,他引:1  
The effect of photoperiodic conditions on sexual behavior was investigated in male Syrian hamsters that were either gonadally intact, or castrated and treated with low doses of testosterone throughout the experiment. Hamsters were exposed to long (LD 16:8) or short (LD 8:16) days for 7 weeks; for the next 8 weeks, either they were exposed to an intermediate daylength (LD 12:12), or daylength conditions remained unchanged. Sexual behavior was affected by photoperiod conditions in both gonadally intact animals and testosterone-treated castrates, but to different degrees. Intact males exposed to short days for 15 weeks exhibited gonadal regression, and their copulatory performance was impaired. The percentage of animals that intromitted or ejaculated was significantly reduced. Additional measures of sexual performance among the copulating males were also affected. In contrast, among the castrates with testosterone clamped at low but stable levels, the proportion of males that mounted, intromitted, or ejaculated was not affected by photoperiod. However, among the males that continued to copulate, sexual performance changes were present in the short-day castrates that resembled those displayed by the intact males. We infer that these behavioral effects in both hormonal conditions reflect primarily a difficulty in the attainment of intromission. Gonadal regression alone cannot easily account for the behavioral deficits of the intact males, because circulating testosterone levels at the end of the experiment were not significantly different between the gonadally intact hamsters and the castrated, testosterone-treated hamsters exposed continuously to short days. Males transferred from either long or short days to the intermediate-daylength condition responded behaviorally to this photoperiod as if it were a short day, that is, their ejaculatory frequency declined. We conclude that male hamsters exposed to photoinhibitory daylengths exhibit deficits in their sexual behavior, not only because endogenous levels of testosterone decrease, but also because the substrates on which this hormone acts become less responsive. We hypothesize that under physiological conditions, the episodic secretion of testosterone imposes constraints on the maintenance or restoration of copulation, and that the potent behavioral effects achieved by constant-release implants of testosterone may mask the presence of photoperiodically induced alterations in the hamster's sensitivity to this gonadal hormone.  相似文献   

12.
Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.  相似文献   

13.
Daily rhythms of pineal and serum melatonin content were characterized for adult female Turkish hamsters (Mesocricetus brandti) exposed to long days (16L:8D, 22 degrees C) or after transfer to short days (10L:14D, 22 degrees C). The nocturnal peak of pineal melatonin content was found to be approximately 3 b greater in duration on short than on long days. Changes in levels of serum melatonin closely paralleled those of pineal melatonin. Thus, an effect of photoperiod on synthesis and secretion of pineal melatonin was demonstrated. In a separate experiment, female hamsters were induced to hibernate by exposure to a short-day, cold environment (10L:14D, 6 degrees C). During the 4 to 5-mo hibernation season, Turkish hamsters are known to display 4 to 8-day hours of torpor (body temperature = 7-9 degrees C) alternating with 1 to 3-day intervals of euthermia (body temperature = 35-37 degrees C). Little evidence of nocturnal synthesis or secretion of pineal melatonin was detected in females sampled during torpor. However, animals sampled during the first day after arousal from a torpor bout displayed melatonin rhythms no different in phase or amplitude from those seen in females held at 22 degrees C. Thus, despite the absence of pineal melatonin output during torpor, the pineal gland of hibernating Turkish hamsters produces an appropriately phased, rhythmic melatonin signal during intervals of euthermia.  相似文献   

14.
The genetic basis for adaptations to the diverse environments encountered by a wide-ranging species should be reflected in the phenotypes of hybrids between differentiated populations. We crossed mice from two ecologically different populations to determine whether adaptations to seasonality in Peromyscus leucopus, the white-footed mouse, display directional dominance or whether they are affected by specific interactions between genes. Connecticut mice (C) have many adaptations to seasonality that are reduced or absent in Georgia mice (G) and that affect both reproductive and thermoregulatory traits. Because these adaptations are cued by photoperiod, temperature, or both, parental and hybrid mice were acclimated to 13 degrees C in either long-day or short-day photoperiod, and several morphological, reproductive, and thermoregulatory traits were measured. Several traits, especially those involved in response to the environment, such as nest size at 13 degrees C, reproductive regression under short-day photoperiod, and molt to winter pelage, showed a non-Mendelian pattern of inheritance. However, there was a pronounced difference between maternal lineages in the F2 generation in that C-maternal F2 mice were less responsive to short-day photoperiod and cold than were the G-maternal F2 mice. Because these two classes of F2 mice are genetically equivalent, this breakdown cannot be explained as a disruption of epistatic gene interactions unless recombination rates are higher in the C-maternal lineage.  相似文献   

15.
Weekly subcutaneous implants of melatonin in a beeswax pellet prevented the testicular regression which normally occurs in hamsters exposed to short photoperiod for 8 weeks. Normal (14L:10D) hamster testes were indistinguishable from the testes of melatonin-treated (1L:23D) hamsters. The exogenous melatonin had varied effects on the fine structure of the golden hamster pineal gland. Pinealocyte nuclear characteristics of melatonin-treated hamsters (smaller average diameter, less polymorphism, and more heterochromatin) as well as apparent reductions in the amounts of hypertrophic SER and lipid moieties seemed to indicate that melatonin caused inhibition of pineal gland activity, and in this respect counteracted the effects of short photoperiod. However, an apparent increase in the number of large mitochondria, membrane whorls and dense-cored secretory vesicles in pinealocytes of melatonin-treated hamsters suggests enhanced pineal gland activity.  相似文献   

16.
Pinealectomized female hamsters (Mesocricetus auratus) housed in a short-day photoperiod were ovariectomized and tested for hormone-induced sexual receptivity in order to investigate the role of the pineal gland in the control of behavioral sensitivity to exogenous ovarian steroid hormones (Experiment 1). Behavioral sensitivity to hormones was further investigated in females maintained in a long-day photoperiod and rendered acyclic by daily administration of exogenous melatonin (Experiment 2). Female aggressive behavior was also monitored in all tests. Pinealectomy did not affect the reduced behavioral sensitivity to exogenous estrogen (E) induced by short days. These animals were also partially refractory to the effects of E when combined with low doses of progesterone. In addition, although melatonin administration mimicked the effects of short days on estrous cyclicity, the expression of hormone-dependent behaviors in these animals resembled the pattern displayed by control animals kept in long days. Thus, these findings suggest that the pineal gland plays a negligible role in the photoperiodic modulation of hormone-dependent sociosexual behaviors in female hamsters.  相似文献   

17.
Comparisons have been made between the effects of shortened daylength and melatonin treatment on plasma prolactin and melatonin levels in pinealectomised (Px) and sham-operated (Sh) ewes. Twenty-two anoestrous Merino crossbred ewes, maintained under normal grazing conditions, were assigned to four groups for a period of 9 weeks. Group 1 remained untreated (control), Group 2 was herded into a dark shed at 1600 h each day until dark (approx 4 h), ewes in Group 3 were injected with 100 μg melatonin s.c. at 1600 h each day and ewes in Group 4 were implanted with a melatonin capsule releasing 125–200 μg/day. Another group (Group 5) of 4 Px and 4 Sh ewes from the same flock was maintained in an animal house and subjected to shortened daylength (10. 5 h L : 13. 5 h D, lights off 1600 h). Three weeks after the treatments began, ewes in Groups 1–4 were exposed to a fertile ram and ewes in Group 5 to a vasectomised ram and the day of mating noted. No differences were evident between Groups 1–4 in the ewes' response to the ram, time taken to conceive, duration of gestation or number of lambs born. In untreated Px ewes no plasma melatonin (< 20 pg/ml) was found in either day or night samples, whereas intact animals showed the characteristic night-time rise. The silastic implants produced stable daytime blood levels of 90–120 pg/ml, whereas a single injection of 100 μg melatonin caused a transitory (2–3 h) rise. Shortened daylength (Group 2) or a single daily injection of melatonin (Group 3) lowered prolactin levels but only in ewes with an intact pineal gland, whereas melatonin implants (Group 4) caused a reduction in plasma prolactin in both Px and Sh sheep. The results indicate that light-induced alterations in prolactin production in sheep involve both the pineal gland and melatonin. Continuous melatonin release from implants caused changes in plasma prolactin levels similar to those seen following exposure to short days.  相似文献   

18.
In three genuses and four species of rodents, housing in winter-like short days (8L:16D) increases male aggressive behavior. In all of these species, males undergo short-day induced regression of the reproductive system. Some studies, however, suggest that the effect of photoperiod on aggression may be independent of reproductive responses. We examined the effects of photoperiod on aggressive behavior in California mice (Peromyscus californicus), which do not display reproductive responsiveness to short days. As expected, short days had no effect on plasma testosterone. Estrogen receptor alpha and estrogen receptor beta immunostaining did not differ in the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, or medial amygdala. However, males housed in short days were significantly more aggressive than males housed in long days. Similar to previous work in beach mice (Peromyscus polionotus), estradiol rapidly increased aggression when male California mice were housed in short days but not when housed in long days. These data suggest that the effects of photoperiod on aggression and estrogen signaling are independent of reproductive responses. The rapid action of estradiol on aggression in short-day mice also suggests that nongenomic mechanisms mediate the effects of estrogens in short days.  相似文献   

19.
Social cues may interact with photoperiod to regulate seasonal adaptations in photoperiod-responsive rodents. Specifically, photoperiod-induced adjustments (e.g., reproduction and immune function) may differ among individuals in heterosexual pairs, same-sex pairs, or isolation. Heterosexual cues may be more influential, based on their potential fitness value, than same-sex cues or no social cues. The present study examined the effects of pair (with a male or female) or individual housing on reproductive and immune responses in male white-footed mice (Peromyscus leucopus) maintained in long or short photoperiods. Female pairing did not affect reproductive responses in short-day males. In long days, however, the presence of a female increased both testosterone concentrations and testes mass compared with individually housed and male-paired mice, respectively. Short-day, individually housed males enhanced delayed-type hypersensitivity (DTH) responses compared with single-housed mice in long days, but all paired groups decreased DTH responses regardless of photoperiod. The lack of enhanced DTH response in male mice paired with females coincided with reduced circulating corticosterone concentrations in both photoperiod treatments. Together, these results suggest that social environment may have important modulatory effects on photoperiod-regulated immune responses in male white-footed mice.  相似文献   

20.
Adult female Bennett's wallabies were treated with reductions in daylength, melatonin implants or injections of melatonin 2 h before dusk in early or mid-seasonal reproductive quiescence. In early reproductive quiescence (5 weeks after the winter solstice) reproductive quiescence did not end in response to 3 or 5 h of reduced daylength or in response to injections (400 ng/kg) or implants (0.5 g in a Silastic rubber envelope) of melatonin. Reductions in daylength at this time of year did, however, result in an extension of the circadian pattern of melatonin secretion. In mid-reproductive quiescence (21 weeks after the winter solstice) treatment with a 5 h reduction in daylength, melatonin injections administered 2 h before dusk or melatonin implants did result in the termination of reproductive quiescence and reactivation of the quiescent corpus luteum within a period of 5 days. The results of these experiments indicate that, in early reproductive quiescence, the Bennett's wallaby is refractory to the influence of reduced daylength or melatonin, although capable of responding to such reduced days in terms of an increased duration of melatonin secretion. Bennett's wallabies therefore exhibit a refractoriness to short days similar to that of some seasonal eutherians although it remains to be established whether this refractory response is the cause of the transition to seasonal reproductive quiescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号