首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
CLC anion transporters form dimers that function either as Cl channels or as electrogenic Cl/H+ exchangers. CLC channels display two different types of “gates,” “protopore” gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl/1H+ exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-β-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the β-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7.  相似文献   

2.
CLC Cl- channels are homodimers in which each subunit has a proper pore and a (fast) gate. An additional slow gate acts on both pores. A conserved glutamate (E166 in CLC-0) is a major determinant of gating in CLC-0 and is crucially involved in Cl-/H+ antiport of CLC-ec1, a CLC of known structure. We constructed tandem dimers with one wild-type (WT) and one mutant subunit (E166A or E166D) to show that these mutations of E166 specifically alter the fast gate of the pore to which they belong without effect on the fast gate of the neighboring pore. In addition both mutations activate the common slow gate. E166A pores have a large, voltage-independent open probability of the fast gate (popen), whereas popen of E166D pores is dramatically reduced. Similar to WT, popen of E166D was increased by lowering pHint. At negative voltages, E166D presents a persistent inward current that is blocked by p-chlorophenoxy-acetic acid (CPA) and increased at low pHext. The pHext dependence of the persistent current is analogous to a similar steady inward current in WT CLC-0. Surprisingly, however, the underlying unitary conductance of the persistent current in E166D is about an order of magnitude smaller than that of the transient deactivating inward Cl- current. Collectively, our data support the possibility that the mutated CLC-0 channel E166D can assume two distinct open states. Voltage-independent protonation of D166 from the outside favors a low conductance state, whereas protonation from the inside favors the high conductance state.  相似文献   

3.
Independent gating of single pores in CLC-0 chloride channels.   总被引:3,自引:0,他引:3  
The Cl- channel from the Torpedo electric organ, CLC-0, is the prototype of a large gene family of Cl- channels. At the single-channel level, CLC-0 shows a "double-barreled" behavior. Recently it was shown that CLC-0 is a dimer, and it was suggested that each subunit forms a single pore. The two protopores are gated individually by a fast voltage and anion-dependent gating mechanism. A slower common gating mechanism operates on both pores simultaneously. Previously, wild-type/mutant heteromeric channels had been constructed that display a large wild-type pore and small mutant pore. Here we use patch-clamp recording of single wild-type and mutant CLC-0 channels to investigate in detail the dependence of the gating of one protopore on the physically attached neighboring pore. No difference in rate constants of opening and closing of protopores could be found comparing homomeric wild-type and heteromeric wild-type/mutant channels. In addition, detailed kinetic analysis reveals that gating of single subunits is not correlated with the gating of the neighboring subunit. The results are consistent with the view that permeation and fast gating of individual pores are fully independent of the neighboring pore. Because the two subunits are associated in a common protein complex, opening and closing transitions of individual pores are probably due to only small conformational changes in each pore. In addition to the fast and slow gating mechanisms known previously for CLC-0, in the course of this study we occasionally observed an additional gating process that led to relatively long closures of single pores.  相似文献   

4.
Many proteins of the CLC gene family are Cl(-) channels, whereas others, like the bacterial ecClC-1 or mammalian ClC-4 and -5, mediate Cl(-)/H(+) exchange. Mutating a "gating glutamate" (Glu-224 in ClC-4 and Glu-211 in ClC-5) converted these exchangers into anion conductances, as did the neutralization of another, intracellular "proton glutamate" in ecClC-1. We show here that neutralizing the proton glutamate of ClC-4 (Glu-281) and ClC-5 (Glu-268), but not replacing it with aspartate, histidine, or tyrosine, rather abolished Cl(-) and H(+) transport. Surface expression was unchanged by these mutations. Uncoupled Cl(-) transport could be restored in the ClC-4(E281A) and ClC-5(E268A) proton glutamate mutations by additionally neutralizing the gating glutamates, suggesting that wild type proteins transport anions only when protons are supplied through a cytoplasmic H(+) donor. Each monomeric unit of the dimeric protein was found to be able to carry out Cl(-)/H(+) exchange independently from the transport activity of the neighboring subunit. NO(3)(-) or SCN(-) transport was partially uncoupled from H(+) countertransport but still depended on the proton glutamate. Inserting proton glutamates into CLC channels altered their gating but failed to convert them into Cl(-)/H(+) exchangers. Noise analysis indicated that ClC-5 switches between silent and transporting states with an apparent unitary conductance of 0.5 picosiemens. Our results are consistent with the idea that Cl(-)/H(+) exchange of the endosomal ClC-4 and -5 proteins relies on proton delivery from an intracellular titratable residue at position 268 (numbering of ClC-5) and that the strong rectification of currents arises from the voltage-dependent proton transfer from Glu-268 to Glu-211.  相似文献   

5.
The ClC channel family consists of chloride channels important for various physiological functions. Two members in this family, ClC-0 and ClC-1, share approximately 50-60% amino acid identity and show similar gating behaviors. Although they both contain two subunits, the number of pores present in the homodimeric channel is controversial. The double-barrel model proposed for ClC-0 was recently challenged by a one-pore model partly based on experiments with ClC-1 exploiting cysteine mutagenesis followed by modification with methanethiosulfonate (MTS) reagents. To investigate the pore stoichiometry of ClC-0 more rigorously, we applied a similar strategy of MTS modification in an inactivation-suppressed mutant (C212S) of ClC-0. Mutation of lysine 165 to cysteine (K165C) rendered the channel nonfunctional, but modification of the introduced cysteine by 2-aminoethyl MTS (MTSEA) recovered functional channels with altered properties of gating-permeation coupling. The fast gate of the MTSEA-modified K165C homodimer responded to external Cl(-) less effectively, so the P(o)-V curve was shifted to a more depolarized potential by approximately 45 mV. The K165C-K165 heterodimer showed double-barrel-like channel activity after MTSEA modification, with the fast-gating behaviors mimicking a combination of those of the mutant and the wild-type pore, as expected for the two-pore model. Without MTSEA modification, the heterodimer showed only one pore, and was easier to inactivate than the two-pore channel. These results showed that K165 is important for both the fast and slow gating of ClC-0. Therefore, the effects of MTS reagents on channel gating need to be carefully considered when interpreting the apparent modification rate.  相似文献   

6.
Transmembrane proton transport is of fundamental importance for life. The list of H+ transporting proteins has been recently expanded with the discovery that some members of the CLC gene family are stoichiometrically coupled Cl/H+ antiporters. Other CLC proteins are instead passive Cl selective anion channels. The gating of these CLC channels is, however, strongly regulated by pH, likely reflecting the evolutionary relationship with CLC Cl/H+ antiporters. The role of protons in the gating of the model Torpedo channel ClC-0 is best understood. ClC-0 is a homodimer with separate pores in each subunit. Each protopore can be opened and closed independently from the other pore by a “fast gate”. A common, slow gate acts on both pores simultaneously. The opening of the fast gate is controlled by a critical glutamate (E166), whose protonation state determines the fast gate’s pH dependence. Extracellular protons likely can arrive directly at E166. In contrast, protonation of E166 from the inside has been proposed to be mediated by the dissociation of an intrapore water molecule. The OH anion resulting from the water dissociation is stabilized in one of the anion binding sites of the channel, competing with intracellular Cl ions. The pH dependence of the slow gate is less well understood. It has been shown that proton translocation drives irreversible gating transitions associated with the slow gate. However, the relationship of the fast gate’s pH dependence on the proton translocation and the molecular basis of the slow gate remain to be discovered.  相似文献   

7.
Mammalian ClC-type chloride channels have large cytoplasmic carboxy-terminal domains whose function is still insufficiently understood. We investigated the role of the distal part of the carboxy-terminus of the muscle isoform ClC-1 by constructing and functionally evaluating two truncation mutants, R894X and K875X. Truncated channels exhibit normal unitary conductances and anion selectivities but altered apparent anion binding affinities in the open and in the closed state. Since voltage-dependent gating is strictly coupled to ion permeation in ClC-1 channels, the changed pore properties result in different fast and slow gating. Full length and truncated channels also differed in methanethiosulphonate (MTS) modification rate constants of an engineered cysteine at position 231 near the selectivity filter. Our data demonstrate that the carboxy-terminus of ClC channels modifies the conformation of the outer pore vestibule.  相似文献   

8.
The single channel conductance of the dihydropyridine (DHP)-sensitive calcium channel from rabbit skeletal muscle transverse tubules was analyzed in detail using the planar bilayer recording technique. With 0.1 M BaCl2 on both sides of the channel (symmetrical solutions), the most frequent conductance is 12 pS, which is independent of holding potential in the range of -80 to +80 mV. This conductance accounts for approximately 80% of all openings analyzed close to 0 mV. Two additional channels of conductance 9 and 3 pS are also present at all positive potentials, but their relative occurrence close to 0 mV is low. All channels depend on the presence of agonist Bay K 8644 and are inhibited by the antagonist nitrendipine. The relative occurrence of 9 and 3 pS can be increased, and that of 12 pS decreased, by several interventions such as external addition of cholesterol, lectin (wheat germ agglutinin), or calmodulin inhibitor R24571 (calmidazolium). The 9- and 3-pS channels are also conspicuous at positive potentials larger than +40 mV. We suggest that 9- and 3-pS channels are two elementary conductances of the same DHP-sensitive Ca channel. Under most circumstances, these two conductances are gated in a coupled way to generate a channel with a unitary conductance of 12 pS. Interventions tested, including large depolarizations, probably decompose or uncouple the 12-pS channel into 9 and 3 pS.  相似文献   

9.
CLC chloride channels: correlating structure with function   总被引:1,自引:0,他引:1  
CLC chloride channels form a large gene family that is found in bacteria, archae and eukaryotes. Previous mutagenesis studies on CLC chloride channels, combined with electrophysiology, strongly supported the theory that these channels form a homodimeric structure with one pore per subunit (a'double-barrelled' channel), and also provided clues about gating and permeation. Recently, the crystal structures of two bacterial CLC proteins have been obtained by X-ray diffraction analysis. They confirm the double-barrelled architecture, and reveal a surprisingly complex and unprecedented channel structure. At its binding site in the pore, chloride interacts with the ends of four helices that come from both sides of the membrane. A glutamate residue that protrudes into the pore is proposed to participate in gating. The structure confirms several previous conclusions from mutagenesis studies and provides an excellent framework for their interpretation.  相似文献   

10.
Members of the CLC protein family of Cl channels and transporters display the remarkable ability to function as either chloride channels or Cl/H+ antiporters. Due to the intracellular localization of ClC-6 and ClC-7, it has not yet been possible to study the biophysical properties of these members of the late endosomal/lysosomal CLC branch in heterologous expression. Whereas recent data suggest that ClC-7 functions as an antiporter, transport characteristics of ClC-6 have remained entirely unknown. Here, we report that fusing the green fluorescent protein (GFP) to the N terminus of ClC-6 increased its cell surface expression, allowing us to functionally characterize ClC-6. Compatible with ClC-6 mediating Cl/H+ exchange, Xenopus oocytes expressing GFP-tagged ClC-6 alkalinized upon depolarization. This alkalinization was dependent on the presence of extracellular anions and could occur against an electrochemical proton gradient. As observed in other CLC exchangers, ClC-6-mediated H+ transport was abolished by mutations in either the “gating” or “proton” glutamate. Overexpression of GFP-tagged ClC-6 in CHO cells elicited small, outwardly rectifying currents with a Cl > I conductance sequence. Mutating the gating glutamate of ClC-6 yielded an ohmic anion conductance that was increased by additionally mutating the “anion-coordinating” tyrosine. Additionally changing the chloride-coordinating serine 157 to proline increased the NO3 conductance of this mutant. Taken together, these data demonstrate for the first time that ClC-6 is a Cl/H+ antiporter.  相似文献   

11.
ClC chloride channels, which are ubiquitously expressed in mammals, have a unique double-barreled structure, in which each monomer forms its own pore. Identification of pore-lining elements is important for understanding the conduction properties and unusual gating mechanisms of these channels. Structures of prokaryotic ClC transporters do not show an open pore, and so may not accurately represent the open state of the eukaryotic ClC channels. In this study we used cysteine-scanning mutagenesis and modification (SCAM) to screen >50 residues in the intracellular vestibule of ClC-0. We identified 14 positions sensitive to the negatively charged thiol-modifying reagents sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) or sodium 4-acetamido-4'-maleimidylstilbene-2'2-disulfonic acid (AMS) and show that 11 of these alter pore properties when modified. In addition, two MTSES-sensitive residues, on different helices and in close proximity in the prokaryotic structures, can form a disulfide bond in ClC-0. When mapped onto prokaryotic structures, MTSES/AMS-sensitive residues cluster around bound chloride ions, and the correlation is even stronger in the ClC-0 homology model developed by Corry et al. (2004). These results support the hypothesis that both secondary and tertiary structures in the intracellular vestibule are conserved among ClC family members, even in regions of very low sequence similarity.  相似文献   

12.
We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.  相似文献   

13.
Members of the CLC family of Cl channels and transporters are homodimeric integral membrane proteins. Two gating mechanisms control the opening and closing of Cl channels in this family: fast gating, which regulates opening and closing of the individual pores in each subunit, and slow (or common) gating, which simultaneously controls gating of both subunits. Here, we found that intracellularly applied Cd2+ reduces the current of CLC-0 because of its inhibition on the slow gating. We identified CLC-0 residues C229 and H231, located at the intracellular end of the transmembrane domain near the dimer interface, as the Cd2+-coordinating residues. The inhibition of the current of CLC-0 by Cd2+ was greatly enhanced by mutation of I225W and V490W at the dimer interface. Biochemical experiments revealed that formation of a disulfide bond within this Cd2+-binding site is also affected by mutation of I225W and V490W, indicating that these two mutations alter the structure of the Cd2+-binding site. Kinetic studies showed that Cd2+ inhibition appears to be state dependent, suggesting that structural rearrangements may occur in the CLC dimer interface during Cd2+ modulation. Mutations of I290 and I556 of CLC-1, which correspond to I225 and V490 of CLC-0, respectively, have been shown previously to cause malfunction of CLC-1 Cl channel by altering the common gating. Our experimental results suggest that mutations of the corresponding residues in CLC-0 change the subunit interaction and alter the slow gating of CLC-0. The effect of these mutations on modulations of slow gating of CLC channels by intracellular Cd2+ likely depends on their alteration of subunit interactions.  相似文献   

14.
Gating of cystic fibrosis transmembrane conductance regulator (CFTR) channels requires intermolecular or interdomain interactions, but the exact nature and physiological significance of those interactions remains uncertain. Subconductance states of the channel may result from alterations in interactions among domains, and studying mutant channels enriched for a single conductance type may elucidate those interactions. Analysis of CFTR channels in inside-out patches revealed that mutation of cysteine residues in NBD1 and NBD2 affects the frequency of channel opening to the full-size versus a 3-pS subconductance. Mutating cysteines in NBD1 resulted in channels that open almost exclusively to the 3-pS subconductance, while mutations of cysteines in NBD2 decreased the frequency of subconductance openings. Wild-type channels open to both size conductances and make fast transitions between them within a single open burst. Full-size and subconductance openings of both mutant and wild-type channels are similarly activated by ATP and phosphorylation. However, the different size conductances open very differently in the presence of a nonhydrolyzable ATP analog, with subconductance openings significantly shortened by ATPgammaS, while full-size channels are locked open. In wild-type channels, reducing conditions increase the frequency and decrease the open time of subconductance channels, while oxidizing conditions decrease the frequency of subconductance openings. In contrast, in the cysteine mutants studied, altering redox potential has little effect on gating of the subconductance.  相似文献   

15.
Most mammalian chloride channels and transporters in the CLC family display pronounced voltage-dependent gating. Surprisingly, despite the complex nature of the gating process and the large contribution to it by the transport substrates, experimental investigations of the fast gating process usually produce canonical Boltzmann activation curves that correspond to a simple two-state activation. By using nonlinear capacitance measurements of two mutations in the ClC-5 transporter, here we are able to discriminate and visualize discrete transitions along the voltage-dependent activation pathway. The strong and specific dependence of these transitions on internal and external [Cl] suggest that CLC gating involves voltage-dependent conformational changes as well as coordinated movement of transported substrates.  相似文献   

16.
Pusch M 《Biochemistry》2004,43(5):1135-1144
CLC Cl(-) channels fulfill numerous physiological functions as demonstrated by their involvement in several human genetic diseases. They have an unusual homodimeric architecture in which each subunit forms an individual pore whose open probability is regulated by various physicochemical factors, including voltage, Cl(-) concentration, and pH. The voltage dependence of Torpedo channel CLC-0 is derived probably indirectly from the translocation of a Cl(-) ion through the pore during the opening step. Recent structure determinations of bacterial CLC homologues marked a breakthrough for the structure-function analysis of CLC channels. The structures revealed a complex fold with 18 alpha-helices and two Cl(-) ions per subunit bound in the center of the protein. The side chain of a highly conserved glutamate residue that resides in the putative permeation pathway appears to be a major component of the channel gate. First studies have begun to exploit the bacterial structures as guides for a rational structure-function analysis. These studies confirm that the overall structure seems to be conserved from bacteria to humans. A full understanding of the mechanisms of gating of eukaryotic CLC channels is, however, still lacking.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase (PKA)- and ATP-regulated chloride channel, whose gating process involves intra- or intermolecular interactions among the cytosolic domains of the CFTR protein. Tandem linkage of two CFTR molecules produces a functional chloride channel with properties that are similar to those of the native CFTR channel, including trafficking to the plasma membrane, ATP- and PKA-dependent gating, and a unitary conductance of 8 picosiemens (pS). A heterodimer, consisting of a wild type and a mutant CFTR, also forms an 8-pS chloride channel with mixed gating properties of the wild type and mutant CFTR channels. The data suggest that two CFTR molecules interact together to form a single conductance pore for chloride ions.  相似文献   

18.
The mechanism of fast-gate opening in ClC-0   总被引:1,自引:1,他引:0       下载免费PDF全文
ClC-0 is a chloride channel whose gating is sensitive to both voltage and chloride. Based on analysis of gating kinetics using single-channel recordings, a five-state model was proposed to describe the dependence of ClC-0 fast-gate opening on voltage and external chloride (Chen, T.-Y., and C. Miller. 1996. J. Gen. Physiol. 108:237-250). We aimed to use this five-state model as a starting point for understanding the structural changes that occur during gating. Using macroscopic patch recordings, we were able to reproduce the effects of voltage and chloride that were reported by Chen and Miller and to fit our opening rate constant data to the five-state model. Upon further analysis of both our data and those of Chen and Miller, we learned that in contrast to their conclusions, (a) the features in the data are not adequate to rule out a simpler four-state model, and (b) the chloride-binding step is voltage dependent. In order to be able to evaluate the effects of mutants on gating (described in the companion paper, see Engh et al. on p. 351 of this issue), we developed a method for determining the error on gating model parameters, and evaluated the sources of this error. To begin to mesh the kinetic model(s) with the known CLC structures, a model of ClC-0 was generated computationally based on the X-ray crystal structure of the prokaryotic homolog ClC-ec1. Analysis of pore electrostatics in this homology model suggests that at least two of the conclusions derived from the gating kinetics analysis are consistent with the known CLC structures: (1) chloride binding is necessary for channel opening, and (2) chloride binding to any of the three known chloride-binding sites must be voltage dependent.  相似文献   

19.
The chloride selective channel from Torpedo electroplax, ClC-0, is the prototype of a large gene family of chloride channels that behave as functional dimers, with channel currents exhibiting two non-zero conductance levels. Each pore has the same conductance and is controlled by a subgate, and these have seemingly identical fast gating kinetics. However, in addition to the two subgates there is a single slower 'supergate' which simultaneously affects both channels. In the present paper, we consider a six state Markov model that is compatible with these observations and develop approximations as well as exact results for relevant properties of groupings of openings, known as bursts. Calculations with kinetic parameter values typical of ClC-0 suggest that even simple approximations can be quite accurate. Small deviations from the assumption of independence within the model lead to marked changes in certain predicted burst properties. This suggests that analysis of these properties may be helpful in assessing independence/non-independence of gating in this type of channel. Based on simulations of models of both independent and non-independent gating, tests using binomial distributions can lead to false conclusions in each situation. This is made more problematic by the difficulty of selecting an appropriate critical time in defining a burst empirically.  相似文献   

20.
Members of the CLC gene family either function as chloride channels or as anion/proton exchangers. The plant AtClC-a uses the pH gradient across the vacuolar membrane to accumulate the nutrient in this organelle. When AtClC-a was expressed in Xenopus oocytes, it mediated exchange and less efficiently mediated Cl/H+ exchange. Mutating the “gating glutamate” Glu-203 to alanine resulted in an uncoupled anion conductance that was larger for Cl than . Replacing the “proton glutamate” Glu-270 by alanine abolished currents. These could be restored by the uncoupling E203A mutation. Whereas mammalian endosomal ClC-4 and ClC-5 mediate stoichiometrically coupled 2Cl/H+ exchange, their transport is largely uncoupled from protons. By contrast, the AtClC-a-mediated accumulation in plant vacuoles requires tight coupling. Comparison of AtClC-a and ClC-5 sequences identified a proline in AtClC-a that is replaced by serine in all mammalian CLC isoforms. When this proline was mutated to serine (P160S), Cl/H+ exchange of AtClC-a proceeded as efficiently as exchange, suggesting a role of this residue in exchange. Indeed, when the corresponding serine of ClC-5 was replaced by proline, this Cl/H+ exchanger gained efficient coupling. When inserted into the model Torpedo chloride channel ClC-0, the equivalent mutation increased nitrate relative to chloride conductance. Hence, proline in the CLC pore signature sequence is important for exchange and conductance both in plants and mammals. Gating and proton glutamates play similar roles in bacterial, plant, and mammalian CLC anion/proton exchangers.CLC proteins are found in all phyla from bacteria to humans and either mediate electrogenic anion/proton exchange or function as chloride channels (1). In mammals, the roles of plasma membrane CLC Cl channels include transepithelial transport (25) and control of muscle excitability (6), whereas vesicular CLC exchangers may facilitate endocytosis (7) and lysosomal function (810) by electrically shunting vesicular proton pump currents (11). In the plant Arabidopsis thaliana, there are seven CLC isoforms (AtClC-a–AtClC-g)2 (1215), which may mostly reside in intracellular membranes. AtClC-a uses the pH gradient across the vacuolar membrane to transport the nutrient nitrate into that organelle (16). This secondary active transport requires a tightly coupled exchange. Astonishingly, however, mammalian ClC-4 and -5 and bacterial EcClC-1 (one of the two CLC isoforms in Escherichia coli) display tightly coupled Cl/H+ exchange, but anion flux is largely uncoupled from H+ when is transported (1721). The lack of appropriate expression systems for plant CLC transporters (12) has so far impeded structure-function analysis that may shed light on the ability of AtClC-a to perform efficient exchange. This dearth of data contrasts with the extensive mutagenesis work performed with CLC proteins from animals and bacteria.The crystal structure of bacterial CLC homologues (22, 23) and the investigation of mutants (17, 1921, 2429) have yielded important insights into their structure and function. CLC proteins form dimers with two largely independent permeation pathways (22, 25, 30, 31). Each of the monomers displays two anion binding sites (22). A third binding site is observed when a certain key glutamate residue, which is located halfway in the permeation pathway of almost all CLC proteins, is mutated to alanine (23). Mutating this gating glutamate in CLC Cl channels strongly affects or even completely suppresses single pore gating (23), whereas CLC exchangers are transformed by such mutations into pure anion conductances that are not coupled to proton transport (17, 19, 20). Another key glutamate, located at the cytoplasmic surface of the CLC monomer, seems to be a hallmark of CLC anion/proton exchangers. Mutating this proton glutamate to nontitratable amino acids uncouples anion transport from protons in the bacterial EcClC-1 protein (27) but seems to abolish transport altogether in mammalian ClC-4 and -5 (21). In those latter proteins, anion transport could be restored by additionally introducing an uncoupling mutation at the gating glutamate (21).The functional complementation by AtClC-c and -d (12, 32) of growth phenotypes of a yeast strain deleted for the single yeast CLC Gef1 (33) suggested that these plant CLC proteins function in anion transport but could not reveal details of their biophysical properties. We report here the first functional expression of a plant CLC in animal cells. Expression of wild-type (WT) and mutant AtClC-a in Xenopus oocytes indicate a general role of gating and proton glutamate residues in anion/proton coupling across different isoforms and species. We identified a proline in the CLC signature sequence of AtClC-a that plays a crucial role in exchange. Mutating it to serine, the residue present in mammalian CLC proteins at this position, rendered AtClC-a Cl/H+ exchange as efficient as exchange. Conversely, changing the corresponding serine of ClC-5 to proline converted it into an efficient exchanger. When proline replaced the critical serine in Torpedo ClC-0, the relative conductance of this model Cl channel was drastically increased, and “fast” protopore gating was slowed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号