首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Egypt,protection of cattle against lumpy skin disease (LSD) was carried out using a sheep poxvirus (Kenyan strain) vaccination strategy.In the present study 15 skin nodules from LSD suspected cows and 5 scab samples from sheep pox (SP) suspected sheep were collected.Hyperimmune rabbit sera to Lumpy skin disease virus (LSDV)/Ismailyia88 strain and sheep pox virus (SPV)/ Kenyan vaccinal strain were prepared.The causative agent in the collected samples was identified using immunoflourescence (IF) and immuno...  相似文献   

2.
3.
4.
5.
Genome of Sindbis Virus   总被引:1,自引:7,他引:1       下载免费PDF全文
32P-labeled ribonucleic acid (RNA) from purified Sindbis virus was examined for the presence of hidden breaks. Viral RNA was treated with acid at pH 2.9 or with formaldehyde and was analyzed on sucrose gradients or by polyacrylamide gel electrophoresis. The sedimentation pattern and mobility on polyacrylamide gels of the 42S RNA was unaffected by heating and quick cooling and was not altered by denaturing agents such as dimethyl sulfoxide and urea. No evidence that Sindbis RNA is a polyaggregate of fragments was obtained. It is concluded that the genome consists of a continuous length of single-stranded polynucleotide.  相似文献   

6.
口蹄疫病毒基因组RNA结构与功能研究进展   总被引:33,自引:1,他引:33  
1 概述 口蹄疫病毒(foot-and-mouth disease virus,FMDV)属小RNA病毒科FMDV属,根据动物交叉保护和血清学试验分为O、A、C、SAT1、SAT2、SAT3和Asial 7个血清型,型间无交叉反应.每型又根据抗原亲缘关系分为不同亚型.小RNA病毒科包括鼻病毒、肠道病毒、甲肝病毒、心病毒和口蹄疫病毒5个属.  相似文献   

7.
The Genome of Swinepox Virus   总被引:1,自引:0,他引:1       下载免费PDF全文
Swinepox virus (SWPV), the sole member of the Suipoxvirus genus of the Poxviridae, is the etiologic agent of a worldwide disease specific for swine. Here we report the genomic sequence of SWPV. The 146-kbp SWPV genome consists of a central coding region bounded by identical 3.7-kbp inverted terminal repeats and contains 150 putative genes. Comparison of SWPV with chordopoxviruses reveals 146 conserved genes encoding proteins involved in basic replicative functions, viral virulence, host range, and immune evasion. Notably, these include genes with similarity to genes for gamma interferon (IFN-gamma) receptor, IFN resistance protein, interleukin-18 binding protein, IFN-alpha/beta binding protein, extracellular enveloped virus host range protein, dUTPase, hydroxysteroid dehydrogenase, superoxide dismutase, serpin, herpesvirus major histocompatibility complex inhibitor, ectromelia virus macrophage host range protein, myxoma virus M011L, variola virus B22R, four ankyrin repeat proteins, three kelch-like proteins, five vaccinia virus (VV) A52R-like family proteins, and two G protein-coupled receptors. The most conserved genomic region is centrally located and corresponds to the VV region located between genes F9L and A38L. Within the terminal 13 kbp, colinearity is disrupted and multiple poxvirus gene homologues are absent or share a lower percentage of amino acid identity. Most of these differences involve genes and gene families with likely functions involving viral virulence and host range. Three open reading frames (SPV018, SPV019. and SPV020) are unique for SWPV. Phylogenetic analysis, genome organization, and amino acid identity indicate that SWPV is most closely related to the capripoxvirus lumpy skin disease virus, followed by the yatapoxvirus yaba-like disease virus and the leporipoxviruses. The gene complement of SWPV better defines Suipoxvirus within the Chordopoxvirinae subfamily and provides a basis for future genetic comparisons.  相似文献   

8.
We report here the complete genomic sequence of a novel Newcastle disease virus (NDV) strain, egret/China/Guangxi/2011, isolated from an egret in Guangxi Province, southern China. A phylogenetic analysis based on a fusion gene comparison with different NDV strains revealed that egret/China/Guangxi/2011 was phylogenetically close to genotype VIIa NDV, and the deduced amino acid sequence was 112R-R-R-K-R-F117 at the fusion protein cleavage site. The whole nucleotide sequence had the highest homology (93.3%) with the sequence of strain chicken/Sukorejo/019/10 (GenBank accession number HQ697255). This study will help us to understand the epidemiology and molecular characteristics of Newcastle disease virus in a migratory egret.  相似文献   

9.
Infectious bursal disease virus (IBDV) causes an economically significant disease of chickens worldwide. Very virulent IBDV (vvIBDV) strains have emerged and induce as much as 60% mortality. The molecular basis for vvIBDV pathogenicity is not understood, and the relative contributions of the two genome segments, A and B, to this phenomenon are not known. Isolate 94432 has been shown previously to be genetically related to vvIBDVs but exhibits atypical antigenicity and does not cause mortality. Here the full-length genome of 94432 was determined, and a reverse genetics system was established. The molecular clone was rescued and exhibited the same antigenicity and reduced pathogenicity as isolate 94432. Genetically modified viruses derived from 94432, whose vvIBDV consensus nucleotide sequence was restored in segment A and/or B, were produced, and their pathogenicity was assessed in specific-pathogen-free chickens. We found that a valine (position 321) that modifies the most exposed part of the capsid protein VP2 critically modified the antigenicity and partially reduced the pathogenicity of 94432. However, a threonine (position 276) located in the finger domain of the virus polymerase (VP1) contributed even more significantly to attenuation. This threonine is partially exposed in a hydrophobic groove on the VP1 surface, suggesting possible interactions between VP1 and another, as yet unidentified molecule at this amino acid position. The restored vvIBDV-like pathogenicity was associated with increased replication and lesions in the thymus and spleen. These results demonstrate that both genome segments influence vvIBDV pathogenicity and may provide new targets for the attenuation of vvIBDVs.  相似文献   

10.
11.
A novel isolate of infectious bursal disease virus (IBDV) was designated GX-NN-L. The GX-NN-L IBDV was a very virulent infectious bursal disease virus (vvIBDV) isolated from broiler flocks in Guangxi province, China, in 2011. The GX-NN-L IBDV caused high mortality, immunosuppression, low weight gain, and bursal atrophy in commercial broilers. Here, we report the complete genome sequence of the GX-NN-L IBDV, a reassortment strain with segments A and B derived from very virulent strains and attenuated IBDV, respectively. These findings from this study provide additional insights into the genetic exchange between attenuated and very virulent strains of IBDV and continuous monitoring of the spread of the virus in chicken.  相似文献   

12.
Marek''s disease virus (MDV) Chinese strain GX0101, isolated in 2001 from a vaccinated flock of layer chickens with severe tumors, was the first reported recombinant MDV field strain with one reticuloendotheliosis virus (REV) long terminal repeat (LTR) insert. GX0101 belongs to very virulent MDV (vvMDV) but has higher horizontal transmission ability than the vvMDV strain Md5. The complete genome sequence of GX0101 is 178,101 nucleotides (nt) and contains only one REV-LTR insert at a site 267 nt upstream of the sorf2 gene. Moreover, GX0101 has 5 repeats of a 217-nt fragment in its terminal repeat short (TRS) region and 3 repeats in internal repeat short (IRS) region, compared to the other 10 strains with only 1 or 2 repeats in both TRS and IRS.  相似文献   

13.
裴育  孙雅丽  赵烨  张国中  薛佳 《病毒学报》2022,38(2):402-414
本研究对从北京、天津以及山东地区发病鸽群中分离到的4株鸽新城疫病毒(Newcastle disease virus,NDV)进行基因组测序和遗传进化分析,并进一步比较这些毒株对鸽子的致病性。研究通过特异性引物扩增4株鸽NDV的全长基因组序列后与GenBank上已登陆的所有鸽NDV毒株的序列进行遗传进化分析;通过病毒生物学特性的测定比较分离株的毒力;通过病毒感染1月龄肉鸽,检测分离株对鸽子的致病性。结果显示4株鸽NDV毒株均属于ClassⅡ类基因Ⅵb亚型病毒,其中Pigeon/China/BJ2018株、Pigeon/China/TJ2017株和Pigeon/China/BJ2013株属于VIb/4bii f亚型,Pigeon/China/SD2012株属于VIb/4bii d亚型。4株病毒与目前国内鸽NDV流行株属于同一进化分支,与鸡源经典疫苗株La Sota属于不同进化分支。对这四个毒株进行生物学特性测定,均为中等毒力毒株。4株病毒中,Pigeon/China/BJ2018株对1月龄肉鸽的致病性最强,通过肌肉注射途径攻毒后3d肉鸽开始表现临床症状,攻毒后第5d开始出现死亡,累计死亡率...  相似文献   

14.
Swine vesicular disease virus (SVDV) is an enterovirus that is both genetically and antigenically closely related to human coxsackievirus B5 within the Picornaviridae family. SVDV is the causative agent of a highly contagious (though rarely fatal) vesicular disease in pigs. We report a rapid method that is suitable for sequencing the complete protein-encoding sequences of SVDV isolates in which the RNA is relatively intact. The approach couples a single PCR amplification reaction, using only a single PCR primer set to amplify the near-complete SVDV genome, with deep-sequencing using a small fraction of the capacity of a Roche GS FLX sequencing platform. Sequences were initially verified through one of two criteria; either a match between a de novo assembly and a reference mapping, or a match between all of five different reference mappings performed against a fixed set of starting reference genomes with significant genetic distances within the same species of viruses. All reference mappings used an iterative method to avoid bias. Further verification was achieved through phylogenetic analysis against published SVDV genomes and additional Enterovirus B sequences. This approach allows high confidence in the obtained consensus sequences, as well as provides sufficiently high and evenly dispersed sequence coverage to allow future studies of intra-host variation.  相似文献   

15.
口蹄疫是由口蹄疫病毒(Foot-and-mouth dis-ease virus,FMDV)感染引起的偶蹄动物(猪、牛、羊、骆驼等)共患的一种急性、烈性、接触性传染病。FMDV是小核糖核酸病毒科(Picornaviridae)口蹄疫病毒属(Aphthovirus)的成员,有7个血清型,分别为O、A、C、Asia1、SAT1、SAT2、SAT3,完整  相似文献   

16.
Mesogenic vaccine strains of Newcastle disease virus (NDV) are widely used in many countries of Asia and Africa to control the Newcastle disease of poultry. In India, the mesogenic strain R2B was introduced in 1945; it protects adult chickens that have been preimmunized with a lentogenic vaccine virus and provides long-lasting immunity. In this article, we report the complete genome sequence of the hitherto unsequenced Indian vaccine virus strain R2B. The viral genome is 15,186 nucleotides in length and contains the polybasic amino acid motif in the fusion protein cleavage site, indicating that this vaccine strain has evolved from a virulent virus. Phylogenetic analysis of this mesogenic vaccine virus classified it with the viruses belonging to genotype III of the class cluster II of NDV.  相似文献   

17.
18.
19.
20.
Improvements to sequencing protocols and the development of computational phylogenetics have opened up opportunities to study the rapid evolution of RNA viruses in real time. In practical terms, these results can be combined with field data in order to reconstruct spatiotemporal scenarios that describe the origin and transmission pathways of viruses during an epidemic. In the case of notifiable diseases, such as foot-and-mouth disease (FMD), these analyses provide important insights into the epidemiology of field outbreaks that can support disease control programmes. This study reconstructs the origin and transmission history of the FMD outbreaks which occurred during 2011 in Burgas Province, Bulgaria, a country that had been previously FMD-free-without-vaccination since 1996. Nineteen full genome sequences (FGS) of FMD virus (FMDV) were generated and analysed, including eight representative viruses from all of the virus-positive outbreaks of the disease in the country and 11 closely-related contemporary viruses from countries in the region where FMD is endemic (Turkey and Israel). All Bulgarian sequences shared a single putative common ancestor which was closely related to the index case identified in wild boar. The closest relative from outside of Bulgaria was a FMDV collected during 2010 in Bursa (Anatolia, Turkey). Within Bulgaria, two discrete genetic clusters were detected that corresponded to two episodes of outbreaks that occurred during January and March-April 2011. The number of nucleotide substitutions that were present between, and within, these separate clusters provided evidence that undetected FMDV infection had occurred. These conclusions are supported by laboratory data that subsequently identified three additional FMDV-infected livestock premises by serosurveillance, as well as a number of antibody positive wild boar on both sides of the border with Turkish Thrace. This study highlights how FGS analysis can be used as an effective on-the-spot tool to support and help direct epidemiological investigations of field outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号