首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When animals are difficult to observe while breeding, insights into the mating system may be gained by using molecular techniques. Patterns of extra-pair copulation, multiple paternity and parental genotype analysis may elucidate population characteristics that help improve knowledge of life history while informing management decisions. During the course of a long-term study of leatherback turtles, we assessed the level of multiple paternity in successive clutches for 12 known females nesting at Sandy Point National Wildlife Refuge (St. Croix, U.S. Virgin Islands). We used seven polymorphic microsatellite markers to genotype the females and 1,019 hatchlings representing 38 nests (3–4 clutches from each female). Using deductive genotype reconstruction and GERUD1.0, we identified the 12 mothers and 17 different fathers that were responsible for 38 nests. We found that seven females (58.3%) showed no evidence of multiple paternity in their clutches, while five females (41.7%) had mated with two males each. There was evidence of two fathers (polyandry) in successive clutches for these five females. Multiple fathers didn’t contribute to clutches equally. For clutches laid by an individual female, the primary father was responsible for 53.7 to 85.9% of the hatchlings. We demonstrate the feasibility of using male genotype reconstruction to characterize the male component of this breeding population and to assess operational sex ratios for breeding sea turtles.  相似文献   

2.
The leatherback turtle (Dermochelys coriacea) is an endangered species, and world-wide populations are declining. To understand better the mating structure of this pelagic and fragile species, we investigated paternity in nearly 1000 hatchlings from Playa Grande in Parque Marino Nacional Las Baulas, Costa Rica. We collected DNA samples from 36 adult female leatherbacks and assessed allele frequency distributions for three microsatellite loci. For 20 of these 36 females, we examined DNA from hatchlings representing multiple clutches, and in some cases assessed up to four successive clutches from the same female. We inferred paternal alleles by comparing maternal and hatchling genotypes. We could not reject the null hypothesis of single paternity in 12 of 20 families (31 of 50 clutches), but we did reject the null hypothesis in two families (eight of 50 clutches). In the remaining six families, the null hypothesis could not be accepted or rejected with certainty because the number of hatchlings exhibiting extra nonmaternal alleles was small, and could thus be a result of mutation or sample error. Successive clutches laid by the same female had the same paternal allelic contribution, indicating sperm storage or possibly monogamy. None of 20 females shared the same three-locus genotype whereas there were two instances of shared genotypes among 17 inferred paternal three-locus genotypes. We conclude that both polyandry and polygyny are part of the mating structure of this leatherback sea turtle population.  相似文献   

3.
We examined multiple paternity during eight breeding events within a 10-year period (1995–2005) for a total of 114 wild American alligator nests in Rockefeller Wildlife Refuge in south-west Louisiana. Our goals included examining (i) within population variation in multiple paternity among years, (ii) variation in multiple paternity in individual females and (iii) the potential for mate fidelity. To accomplish this, in the current study, eggs were sampled from 92 nests over 6 years and analysed along with 22 nests from a previous 2-year study. Genotypes at five microsatellite loci were generated for 1802 alligator hatchlings. Multiple paternity was found in 51% of clutches and paternal contributions to these clutches were highly skewed. Rates of multiple paternity varied widely among years and were consistently higher in the current study than previously reported for the same population. Larger females have larger clutches, but are not more likely to have multiply sired nests. However, small females are unlikely to have clutches with more than two sires. For 10 females, nests from multiple years were examined. Seven (70%) of these females exhibited long-term mate fidelity, with one female mating with the same male in 1997, 2002 and 2005. Five females exhibiting partial mate fidelity (71%) had at least one multiple paternity nest and thus mated with the same male, but not exclusively. These patterns of mate fidelity suggest a potential role for mate choice in alligators.  相似文献   

4.
Aggregate, or explosive, breeding is widespread among vertebrates and likely increases the probability of multiple paternity. We assessed paternity in seven field-collected clutches of the explosively breeding spotted salamander (Ambystoma maculatum) using 10 microsatellite loci to determine the frequency of multiple paternity and the number of males contributing to a female's clutch. Using the Minimum Method of allele counts, multiple paternity was evident in 70% of these egg masses. Simple allele counts underestimate the number of contributing males because this method cannot distinguish multiple fathers with common or similar alleles. Therefore, we used computer simulations to estimate from the offspring genotypes the most likely number of contributing fathers given the distributions of allele frequencies in this population. We determined that two to eight males may contribute to A. maculatum clutches; therefore, multiple paternity is a common strategy in this aggregate breeding species. In aggregate mating systems competition for mates can be intense, thus differential reproductive success (reproductive skew) among males contributing to a female's clutch could be a probable outcome. We use our data to evaluate the potential effect of reproductive skew on estimates of the number of contributing males. We simulated varying scenarios of differential male reproductive success, ranging from equal contribution to high reproductive skew among contributing sires in multiply sired clutches. Our data suggest that even intermediate levels of reproductive skew decrease confidence substantially in estimates of the number of contributing sires when parental genotypes are unknown.  相似文献   

5.
The goal of this study was to assess the consequences of single versus multiple paternity by identifying paternity of clutches per female to identify whether there were detectable costs or benefits. Multiple mating can occur when the benefits of mating outweigh the costs, but if costs and benefits are equal, no pattern is expected. Previous research on loggerhead sea turtle (Caretta caretta) populations found male‐biased breeding sex ratios and multiple mating by many females nesting in southwestern Florida. A sample of nesting loggerhead females who laid more than one nest over the course of the season and a subset of their hatchlings were examined from 36 clutches in 2016 on Sanibel Island, Florida. Males that fathered hatchlings in the first clutch sampled were identified in subsequent clutches. Interestingly, 75% of the females analyzed had mated singly. No male was represented in more than one female's clutches. The results suggest that females likely mate at the beginning of the season and use stored sperm for multiple clutches. Evidence for mating between laying events was limited. There was no consistent pattern across the subsequent multiple paternity clutches, suggesting benefits to loggerhead females likely equal their costs and subsequent mating is likely determined by female preference.  相似文献   

6.
We present the first data collected on the genetic mating system of the hawksbill turtle Eretmochelys imbricata, the only marine turtle not studied to date. We examined paternity within 12 egg clutches from ten female hawksbill turtles from Sabah Turtle Islands, Malaysia. A total of 375 hatchlings were analysed using five microsatellite markers. Results demonstrated that clutches from two out of ten females were sired by multiple males (maximum of two). Although at a low frequency, observation of multiple paternity indicates that hawksbill turtles exhibit the same genetic mating system (polyandry) as observed for other species of marine turtles. Consistent paternity across multiple clutches laid by individual females in one breeding season supports the hypothesis that sperm are stored from mating prior to nesting and are then used to fertilize all subsequent clutches of eggs that season.  相似文献   

7.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

8.
Multiple paternity in reptiles: patterns and processes   总被引:4,自引:2,他引:2  
Uller T  Olsson M 《Molecular ecology》2008,17(11):2566-2580
The evolution of female promiscuity poses an intriguing problem as benefits of mating with multiple males often have to arise via indirect, genetic, effects. Studies on birds have documented that multiple paternity is common in natural populations but strong evidence for selection via female benefits is lacking. In an attempt to evaluate the evidence more broadly, we review studies of multiple paternity in natural populations of all major groups of nonavian reptiles. Multiple paternity has been documented in all species investigated so far and commonly exists in over 50% of clutches, with particularly high levels in snakes and lizards. Marine turtles and lizards with prolonged pair-bonding have relatively low levels of multiple paternity but levels are nevertheless higher than in many vertebrates with parental care. There is no evidence that high levels of polyandry are driven by direct benefits to females and the evidence that multiple paternity arises from indirect genetic benefits is weak. Instead, we argue that the most parsimonious explanation for patterns of multiple paternity is that it represents the combined effect of mate-encounter frequency and conflict over mating rates between males and females driven by large male benefits and relatively small female costs, with only weak selection via indirect benefits. A crucial step for researchers is to move from correlative approaches to experimental tests of assumptions and predictions of theory under natural settings, using a combination of molecular techniques and behavioural observations.  相似文献   

9.
The reproductive strategies and variation in reproductive success of ticks are poorly understood. We determined variation in multiple paternity in the American dog tick Dermancentor variabilis . In total, 48 blood-engorged female ticks and 22 male companion ticks were collected from 13 raccoon ( Procyon lotor ) hosts. In the laboratory, 56.3% of blood-engorged females laid eggs, of which 37.0% hatched or showed signs of development. We examined the presence of multiple paternity in the ensuing clutches by genotyping groups of eggs and larvae at 5 microsatellite loci and subtracting the known maternal alleles, thereby identifying male-contributed alleles. Seventy-five percent of the clutches presented multiple paternity, with a mode of 2 fathers siring the clutch. Males associated with the females on the host always sired some offspring. In 1 case, a male was the sire of clutches derived from 2 females, indicating both polygyny and polyandry may occur for this species. These results, combined with those of several other recent studies, suggest that multiple paternity might be frequent for ixodid ticks.  相似文献   

10.

Within captive management programs for species of conservation concern, understanding the genetic mating system is of fundamental importance, given its role in generating and maintaining genetic diversity and promoting opportunities for sperm competition. If a goal of a conservation program is reintroduction, knowledge of the mating system may also inform prediction models aimed at understanding how genetic diversity may be spatially organized, thus informing decisions regarding where and which individuals should be released to maximize genetic diversity in the wild population. Within captive populations, such information may also influence how animals are maintained in order to promote natural behaviors. Here we investigate the genetic mating system of the Guatemalan beaded lizard, Heloderma charlesbogerti, a member of an entire clade lacking such information. A group of adult male and female H. charlesbogerti co-habited a large outdoor enclosure for five years during the species’ perceived breeding season. Through genomic parentage analysis, 50% of clutches comprising multiple offspring were found to result from multiple paternity, with up to three males siring offspring within single clutches. Both males and females were observed to produce offspring with multiple partners within a given year. As such, within this captive environment, where opportunities existed for mating with multiple partners, the genetic mating system was found to be highly polygamous, with multiple paternity common within clutches. These findings are novel for the family Helodermatidae, and the results have broader implications about how reproductive opportunities should be managed within captive conservation programs.

  相似文献   

11.
Many aspects of sea turtle biology are difficult to measure in these enigmatic migratory species, and this lack of knowledge continues to hamper conservation efforts. The first study of paternity in a sea turtle species used allozyme analysis to suggest multiple paternity in loggerhead turtle (Caretta caretta) clutches in Australia. Subsequent studies indicated that the frequency of multiple paternity varies from species to species and perhaps location to location. This study examined fine-scale population structure and paternal contribution to loggerhead clutches on Melbourne Beach, FL, USA using microsatellite markers. Mothers and offspring from 70 nests collected at two locations were analysed using two to four polymorphic microsatellite loci. Fine-scale population differentiation was not evident between the sampled locations, separated by 8 km. Multiple paternity was common in loggerhead nests on Melbourne Beach; 22 of 70 clutches had more than one father, and six had more than two fathers. This is the first time that more than two fathers have been detected for offspring in individual sea turtle nests. Paternal genotypes could not be assigned with confidence in clutches with more than two fathers, leaving the question of male philopatry unanswered. Given the high incidence of multiple paternity, we conclude that males are not a limiting resource for this central Florida nesting aggregate.  相似文献   

12.
Characterization of a species mating systems is fundamental for understanding the natural history and evolution of that species. Polyandry can result in the multiple paternity of progeny arrays. The only previous study of the loggerhead turtle (Caretta caretta) in the USA showed that within the large peninsular Florida subpopulation, multiple paternity occurs in approximately 30% of clutches. Our study tested clutches from the smaller northern subpopulation for the presence of multiple paternal contributions. We examined mothers and up to 20 offspring from 19.5% of clutches laid across three nesting seasons (2008–2010) on the small nesting beach on Wassaw Island, Georgia, USA. We found that 75% of clutches sampled had multiple fathers with an average of 2.65 fathers per nest (1–7 fathers found). The average number of fathers per clutch varied among years and increased with female size. There was no relationship between number of fathers and hatching success. Finally, we found 195 individual paternal genotypes and determined that each male contributed to no more than a single clutch over the 3‐year sampling period. Together these results suggest that the operational sex ratio is male‐biased at this site.  相似文献   

13.
Polyandry is a common phenomenon and challenges the traditional view of stronger sexual selection in males than in females. In simultaneous hermaphrodites, the physical proximity of both sex functions was long thought to preclude the operation of sexual selection. Laboratory studies suggest that multiple mating and polyandry in hermaphrodites may actually be common, but data from natural populations are sparse. We therefore estimated the rate of multiple paternity and its seasonal variability in the annual, sperm‐storing, simultaneously hermaphroditic freshwater snail Radix balthica for the entire duration of the reproductive lifespan. We also tested whether multiple paternity was associated with clutch size or embryonic development. To obtain these data, we measured and genotyped 60 field‐collected egg clutches using nine highly polymorphic microsatellite markers. Overall, 50% of the clutches had multiple fathers, and both the frequency (20–93% of clutches) and magnitude of multiple paternity (mean 1.3–3.8 fathers per clutch) substantially increased over time, probably because of extensive sperm storage. Most multiply sired clutches (83%) had a dominant father, but neither clutch size nor the proportion of developed embryos per clutch was associated with levels of multiple paternity. Both the evident promiscuity and the frequent skew of paternity shares suggest that sexual selection may be an important evolutionary force in the study population.  相似文献   

14.
Multiple paternity is relatively common across diverse taxa; however, the drivers and implications related to paternal and maternal fitness are not well understood. Several hypotheses have been offered to explain the occurrence and frequency of multiple paternity. One set of hypotheses seeks to explain multiple paternity through direct and indirect benefits including increased genetic diversity or enhanced offspring fitness, whereas another set of hypotheses explains multiple paternity as a by‐product of sexual conflict and population‐specific parameters such as density. Here, we investigate mating system dynamics in a historically studied population of the American alligator (Alligator mississippiensis) in coastal South Carolina. We examine parentage in 151 nests across 6 years and find that 43% of nests were sired by multiple males and that male reproductive success is strongly influenced by male size. Whereas clutch size and hatchling size did not differ between singly sired and multiply sired nests, fertility rates were observed to be lower in multiply sired clutches. Our findings suggest that multiple paternity may exert cost in regard to female fitness, and raise the possibility that sexual conflict might influence the frequency of multiple paternity in wild alligator populations.  相似文献   

15.
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.  相似文献   

16.
The elkhorn sculpinAlcichthys alcicornis spawns and subsequently copulates, and the eggs are then cared for by the male. DNA fingerprinting was used to determine the paternity of males for the clutches guarded by them. When a female was mated with 4 males in succession in aquaria, males did not fertilize the eggs spawned just before copulation unless the female was unimpregnated but fathered the eggs spawned by the female later. In the field, near the end of the breeding season, males were genetically unrelated to the clutches in their territories. We concluded that males guard non-kin eggs for the opportunity to copulate and to fertilize the future clutches of their mates.  相似文献   

17.
High frequency of polyandry in a lek mating system   总被引:1,自引:0,他引:1  
The adaptive significance of polyandry by female birds in theabsence of direct benefits remains unclear. We determined thefrequencies of polyandrous mating and multiple paternity inthe ruff, a lekking shorebird with a genetic dimorphism inmale mating behavior. More than half of female ruffs mate with, and have clutches fertilized by, more than one male. Individualfemales mate with males of both behavioral morphs more oftenthan expected. Polyandrous mating was more likely followingcopulation interference, but interference was uncommon. Themultiple paternity rate of ruffs is the highest known for avian lekking species and for shorebirds. The general hypothesis thatpair-bond constraints are the major selective factor favoringmultiple mating in birds does not predict our findings. Activegenetic diversification, which has been widely dismissed asa functional explanation for polyandrous mating in birds, mayapply with respect to the behavioral polymorphism in ruffs becauseof a Mendelian genetic basis for male behavioral morph determinationand aspects of male—male cooperation and female choice.However, rates of multiple paternity in other species of lekkingbirds are higher than generally realized, and the potentialbenefits of diversification in general deserve further consideration.  相似文献   

18.
Multiple paternity occurs in most species and animal groups that have been studied. Because mating involves fitness costs to individual females, theory predicts that polyandrous females gain greater fitness benefits than costs, allowing the behavior to be maintained. Genetic, rather than material, benefits often occur in species where males provide females with little more than sperm and seminal fluid. We compared fitness correlates of single‐ and double‐sire clutches from female marbled salamanders (Ambystoma opacum) at the egg, hatchling, and metamorph stages of offspring development. Because clutches were collected from experimental breeding groups, strict paternity exclusion of offspring using microsatellite data allowed us to categorize each clutch as having either one or two fathers. Early offspring viability and size of hatchlings were not different between single‐ and multiple‐paternity clutches. Larvae from the two clutch types were allowed to develop together in field enclosures until metamorphosis. Although there was no difference in size at metamorphosis, survival to metamorphosis was significantly higher in multiple‐paternity clutches (44% vs. 40%) suggesting a benefit for females. The results were consistent with genetic benefits, although maternal effects could not be ruled out. The data did not support predictions of the genetic bet‐hedging and good sperm hypotheses for genetic benefits of polyandry.  相似文献   

19.
In recent years, genetic studies have been used to investigate mating systems of marine turtles, but to date no such research has been conducted on the flatback turtle (Natator depressus). This study investigates paternity of flatback turtle clutches at two rookeries in Queensland, Australia; Peak Island (Keppel Bay), and Mon Repos (Bundaberg). In the 2004–2005 nesting season, tissue samples were taken from either single or multiple clutches (n = 16) of nesting females (n = 8) representing a sampling effort ranging from 25% to 50% offspring per nest. Determination of the extent of multiple paternity was done using a comparative approach that included initial inferences based on observed alleles, Chi-square tests for deviations from Mendelian expectations, and three software programs (PARENTAGE1.0, GERUD2.0 and MER3.0). Results varied depending on the approach, but by calculating a consensus value of the output from these different methods, the null hypothesis of single paternity could be rejected in at least 11 of the 16 clutches (69%). Multiple paternity was thus observed in the clutches of six of nine females (67%), with two or three fathers being the most likely outcome. Analyses of successive clutches illustrated that paternal contribution to clutch fertilization can vary through time, as observed for two females. This first evidence regarding the mating system of flatback turtles indicates that multiple paternity is common in this species and that the observed frequency of multiple paternity is among the higher values reported in marine turtle species. Application of these results to estimates of effective population size (N e) suggests that population size may have been relatively stable over long periods. Continued monitoring of population dynamics is recommended to ensure that future changes in the east coast can be detected.  相似文献   

20.
Using a suite of 10 highly variable microsatellite loci, we conducted genetic paternity analyses for 76 embryos in the broods of 12 pregnant females representing 6 viviparous species of true sea snakes (Hydrophis clade) in the family Elapidae. To our surprise, we uncovered no evidence for multiple paternity within any of the clutches despite the fact that the genetic markers showed high intraspecific heterozygosities and as many as 20 conspecific alleles per locus. This outcome stands in sharp contrast to the rather high (but also variable) frequency of multiple paternity previously reported in many other reptilian species. However, because our study appears to be the first assessment of genetic parentage for any sea snake species (and indeed for any member of the elapid clade), we can only speculate as to whether this apparent monandry by females is a broader phylogenetic characteristic of elapid snakes or whether it might relate somehow to the sea snakes' peculiar lifestyle that uniquely combines viviparity with a marine existence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号