首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In order to assess the efficacy of selected aromatase inhibitors on Atlantic salmon (Salmo salar) ovarian and brain tissue, in vitro systems were developed for measuring 17beta-estradiol (E(2)) production by these tissues. Isolated vitellogenic follicles, or homogenised whole brains were incubated at 10 degrees C in complete Cortlands solution for 18 or 42 h respectively, and E(2) levels in the medium were determined by RIA. The addition of testosterone to the medium increased E(2) production in all preparations. E(2) production by whole brain homogenate was reduced by co-incubation with the aromatase inhibitors 1,4,6-androstatriene-3,17-dione (ATD), 4-androstene-4-ol-3,17-dione (OHA), aminoglutethimide, fadrozole or miconazole. Fadrozole, ATD, and OHA reduced E(2) production by vitellogenic follicles at a medium concentration of 0.1 microg mL(-1), whereas miconazole was only effective at 10 microg mL(-1). This study demonstrates a simple and rapid screening method for assessing the efficacy of aromatase inhibitors on fish tissues, and that the aromatase inhibitors ATD, OHA and fadrozole are potent inhibitors of both brain and gonadal aromatase in vitro, in Atlantic salmon.  相似文献   

4.
Intracranial implantation of minute pellets of gonadal steroids was combined with aromatase inhibitor treatment to determine if aromatization within the preoptic area (POA) is necessary for androgens to activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, implantation of pellets of testosterone propionate (TP) or estradiol benzoate (EB) in the POA of castrated males restores male-typical copulatory behavior. In Experiment 1, adult male castrated quail were implanted intracranially with 200-micrograms pellets of equimolar mixtures of crystalline TP + cholesterol (CHOL), TP + 1,4,6-androstatriene-3,17-dione (ATD, an aromatase inhibitor), EB + ATD, or CHOL and behavior-tested with intact males and females. Copulation was stimulated by POA implants containing TP or EB (three of six CHOL + TP males and two of seven ATD + EB males copulated vs zero of four CHOL males), but copulation was not inhibited by combining ATD with TP (three of four ATD + TP males copulated). In Experiment 2, adult male castrated quail were injected systemically with ATD or oil for 6 days prior to and 14 days after intracranial implantation of 200-micrograms pellets containing the same amounts of TP or EB as in Experiment 1. The ATD injections completely blocked copulatory behavior in males with TP implants in the POA such that ATD/TP and Oil/TP mount frequencies differed significantly, but failed to block copulation in males with EB implants in the POA (proportions of males copulating were ATD/EB, 6/8; ATD/TP, 0/6; Oil/TP, 4/7). The cloacal foam gland, an androgen-sensitive secondary sex character, was unaffected by the dose of ATD used. We conclude that activation of copulatory behavior by TP implants in the POA is not due to nonspecific effects of high local testosterone concentrations but rather to aromatization. These results support the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to activation of male-typical copulatory behavior.  相似文献   

5.
The injection before Day 12 of incubation of estradiol benzoate (EB) into Japanese quail eggs produces a complete behavioral demasculinization of adult males that will hatch from these eggs. These males never show copulatory behavior even after administration of high levels of exogenous testosterone (T). It is usually assumed that such a demasculinization normally takes place in female embryos under the influence of endogenous estrogens but few experimental data are available to confirm the validity of this model. A series of four experiments was performed during which R76713, a triazole derivative that specifically inhibits aromatase (estrogen synthetase) activity, was injected into quail eggs at different stages of incubation to prevent the production of endogenous estrogens. The consequences of these embryonic treatments on the T-activated sexual behavior in adults were then quantified. When injected before Day 12 of incubation, R76713 completely blocked the behavioral demasculinization of females without affecting the behavior of the males. After a treatment with T, almost all R76713-treated females showed as adults a masculine copulatory behavior that was undistinguishable from the behavior of intact males. This effect was fully reversed by the injection in egg of EB demonstrating that the effects of R76713 were specifically due to the suppression of endogenous estrogens. Injection of R76713 during the late phase of the incubation (Day 12 or Day 15) only maintained weak copulatory behavior in females which confirmed that the behavioral demasculinization in quail takes place mainly though not exclusively during the early stages of ontogeny. In a last experiment, we combined an early R76713 treatment with an injection of EB either on Day 9 or on Day 14 of incubation. This showed that the sensitivity to differentiating effects of estrogens varies with age in a sexually differentiated manner. The EB injection on Day 9 demasculinized both male and female embryos. If this injection was delayed until Day 14, it was no longer effective in males but still caused a partial demasculinization of females. This demonstrates that even if females are not yet behaviorally demasculinized on Day 9 of incubation (suppression of aromatase activity at that age will maintain the behavior), their sensitivity to estrogens is already different from that of males.  相似文献   

6.
The aim of this study was to determine in the ring dove, the effects of aromatase inhibition on the expression of aggressive courtship and nest-soliciting behaviours in relation to the distribution of cells containing immunoreactive androgen (AR) and progesterone (PR) receptor in the hypothalamus and pituitary gland. Isolated sexually experienced ring doves were transferred in opposite sex pairs to individual breeding cages, and then injected with the aromatase inhibitor, fadrozole (four males and four females), or saline vehicle (four males and four females) for 3 days at 12 hourly intervals. Saline-injected control males displayed aggressive courtship behaviours (bow-cooing and hop-charging) and nest-soliciting throughout the study, and control females displayed nest-soliciting. By day 3, fadrozole treatment resulted in the disappearance of all these behaviours and in a decrease or disappearance of AR and PR in the anterior pituitary gland, and in the nucleus preopticus paraventricularis magnocellularis (PPM), nucleus preopticus medialis (POM), nucleus hypothalami lateralis posterioris (PLH), and ventral, lateral and dorsal nucleus tuberalis in the hypothalamus (VTu, LTu, DTu). In the nucleus preopticus anterior (POA), fadrozole treatment decreased AR in both sexes and decreased PR in females but not in males. Cells containing co-localized nuclear AR and PR were found in all hypothalamic areas examined, and in the anterior pituitary gland. Fadrozole is suggested to reduce the local availability of estrogen required indirectly for the induction of AR, and except in cells containing PR in the male POA, for the direct induction of PR. It is suggested that aggressive courtship behaviour is terminated by “cross talk” between aromatase-independent PR and aromatase-dependent AR co-localized in neurons in the POA. Aromatase-independent PR may increase in the male POA in response to visual cues provided by a partner. Aromatase-dependent PR in the POM, and basal hypothalamus may play a role in the facilitatory effect of progesterone on estrogen-induced nest-orientated behaviours. (Mol Cell Biochem 276: 193–204, 2005)  相似文献   

7.
A sexually dimorphic nucleus exists in the dorsal region of the ferret preoptic/anterior hypothalamic area (POA/AH), and is called the male nucleus of the POA/AH (MN-POA/AH) because it is found only in males. Development of the MN-POA/AH was studied in male ferrets, and for comparison a sexually nondimorphic ventral POA/AH nucleus was studied in both sexes. The MN-POA/AH was conspicuous in males as early as embryonic day 37 (E37) of a 41-day gestation, and its volume increased until postnatal day 56 (P56). No nucleus was present in the dorsal POA/AH of females at any age. The densities and average somal areas of cells in the dorsal POA/AH were similar in males and females at E33, before the MN-POA/AH could be visualized. However, at E37 and E41 dorsal cells were greater in density and/or somal area in males than in females, accounting for the appearance of a nucleus in males at these ages. To insure that the dorsal POA/AH nucleus seen in males at E37 and E41 was the presumptive MN-POA/AH present in adult males, pregnant ferrets were given progesterone and either implanted subcutaneously (s.c.) with testosterone (T) or ovariectomized and implanted s.c. with the aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), on day 30 of gestation. As predicted from previous studies in which subjects were sacrificed in adulthood, formation of a dorsal POA/AH nucleus was promoted in female ferrets by T, and blocked in males by maternal ovariectomy and ATD treatment for animals sacrificed at E41. Much evidence suggests that behavioral sexual differentiation is accomplished in the male ferret between age E28 and P20. The MN-POA/AH is present and potentially functional in males during a considerable portion of this perinatal period.  相似文献   

8.
In many species of vertebrates, major sex differences affect reproductive behavior and endocrinology. Most of these differences do not result from a direct genomic action but develop following early exposure to a sexually differentiated endocrine milieu. In rodents, the female reproductive phenotype mostly develops in the absence of early steroid influence and male differentiation is imposed by the early action of testosterone, acting at least in part through its central conversion into estrogens or aromatization. This pattern of differentiation does not seem to be applicable to avian species. In Japanese quail (Coturnix japonica), injection of estrogens into male embryos causes a permanent loss of the capacity to display male-type copulatory behavior when exposed to testosterone in adulthood. Based on this experimental result, it was proposed that the male reproductive phenotype is “neutral” in birds (i.e. develops in the absence of endocrine influence) and that endogenous estradiol secreted by the ovary of the female embryo is responsible for the physiological demasculinization of females. This model could be recently confirmed. Females indeed display a higher level of circulating estrogens that males during the second part of their embryonic life. In addition, treatment of female embryos with the potent aromatase inhibitor, R76713 or racemic vorozole™ which suppresses the endogenous secretion of estrogens maintains in females the capacity to display the full range of male copulatory behaviors. The brain mechanisms that control this sexually differentiated behavior have not been identified so far but recent data suggest that they should primarily concern a sub-population of aromatase-immunoreactive neurons located in the lateral parts of the sexually dimorphic preoptic nucleus. The zebra finch (Taeniopygia guttata) exhibits a more complex, still partly unexplained, differentiation pattern. In this species, early treatment with exogenous estrogens produces a masculinization of singing behavior in females and a demasculinization of copulatory behavior in males. Since normal untreated males sing and copulate, while females never show these behaviors even when treated with testosterone, it is difficult to understand under which endocrine conditions these behaviors differentiate. In an attempt to resolve this paradox, we recently treated young zebra finches with R76713 in order to inhibit their endogenous estrogens secretion during ontogeny and we subsequently tested their behavior in adulthood. As expected, the aromatase inhibitor decreased the singing frequency in treated males but it did not affect the male-type copulatory behavior in females nor in males. In addition, the sexuality differentiated brain song control nuclei which are also masculinized in females by early treatment with estrogens, were not affected in either sex by the aromatase inhibitor. In conclusion, available data clearly show that sexual differentiation of reproductive behaviors in birds follows a pattern that is almost opposite to that of mammals. This difference may be related to the different mechanisms of sex determination in the two taxa. In quail, the ontogeny of behavioral differentiation is now well understood but we only have a very crude notion of the brain structures that are concerned. By contrast, in zebra finches, the brain mechanisms controlling the sexually differentiated singing behavior in adulthood have been well identified but we do not understand how these structures become sexually dimorphic during ontogeny.  相似文献   

9.
Sex steroid inhibitors were used to characterize the effects of 17beta-estradiol (E2) and testosterone (T) on the sexual growth dimorphism of Eurasian perch juveniles. In experiment 1, growth responses to different doses of either E2 (25, 50, 75, and 100 mgkg(diet)-1) or fadrozole (Fa; 50 and 100 mgkg(diet)-1) were compared in triplicate tanks of 30 fish each during 85 days. In experiment 2, five diets containing (50 mgkg(diet)-1) Tamoxifen (Ta), Flutamide (Flu), Fa, E2, and T were tested in triplicate tanks of 20 fish each during 90 days. Steroid supplementation or inhibition increased or decreased E2 and T plasma levels. Moreover, E2 treatment induced a higher plasma vitellogenin level but decreased triidothyronine levels. Brain aromatase activity (AA) was lower in Fa-treated fish than in other groups. In experiment 1, E2 supplementation did not promote growth, but high doses had negative effects as did Fa. In experiment 2, a greater growth response was observed only in E2-treated females in relation to higher food intake (FI) not feeding efficiency. Fa also promoted growth and FI both in females and males during the last month of the experiment. Other treatments did not affect growth, but T treatment decreased FI in males. In conclusion, the results did not provide clear evidence for E2 action on sexual growth dimorphism, but showed that testosterone may decrease growth in males by decreasing food intake in Eurasian perch. Therefore, the acceleration of male-to-female growth differences with age may not be a result of promotion of growth in females by estrogens, but a consequence of a reduction in growth by increased secretion of androgens in males.  相似文献   

10.
Previous tract-tracing studies demonstrated the existence of projections from the medial preoptic nucleus (POM) to the mesencephalic central gray (GCt) in quail. GCt contains a significant number of aromatase-immunoreactive (ARO-ir) fibers and punctate structures, but no ARO-ir cells are present in this region. The origin of the ARO-ir fibers of the GCt was investigated here by retrograde tract-tracing combined with immunocytochemistry for aromatase. Following injection of fluorescent microspheres in GCt, retrogradely labeled cells were found in a large number of hypothalamic and mesencephalic areas and in particular within the three main groups of ARO-ir cells located in the POM, the ventromedial nucleus of the hypothalamus, and the bed nucleus striae terminalis. Labeling of these cells for aromatase by immunocytochemistry demonstrated, however, that aromatase-positive retrogradely labeled cells are observed almost exclusively within the POM. Double-labeled cells were abundant in both the rostral and caudal parts of the POM and their number was apparently not affected by the location of the injection site within GCt. At both rostro-caudal levels of the POM, ARO-ir retrogradely labeled cells were, however, more frequent in the lateral than in the medial POM. These data indicate that ARO-ir neurons located in the lateral part of the POM may control the premotor aspects of male copulatory behavior through their projection to GCt and suggest that GCt activity could be affected by estrogens released from the terminals of these ARO-ir neurons.  相似文献   

11.
A sensitive in vitro 3H2O microassay for aromatase activity was used to evaluate the potency and selectivity of three aromatase inhibitors in mammalian (gerbil) and avian (ring dove) hypothalamus. The steroidal inhibitors, 1,4,6-androstatrien-3,17-dione (ATD) and 4-hydroxy-androstenedione (4-OH-A) were compared with a new non-steroidal imidazole inhibitor, CGS 16949A [4-(5,6,7,8-tetrahydroimidazo-[1,5-a]-pyridin-5-yl)benzonitrile HCl]. Adult male dove hypothalamic aromatase is highly active [Vmax = 5.3 pmol testosterone (T) converted/h/mg protein], has high substrate binding affinity (Km = 4.0 nM), and direct involvement in control of sexual behaviour. With [1 beta-3H]T or [1 beta-3H]A as substrate, male dove preoptic aromatase activity was inhibited more effectively and selectively by CGS 16949A. Thus, Kis and IC50s for aromatization were approximately 50 times lower for the non-steroidal inhibitor, and inhibition of the other major androgen-metabolizing enzymes (5 alpha/beta-reductase) occurred at concentrations at least one order of magnitude greater than for ATD and 4-OH-A. Neonatal male gerbil hypothalamic aromatase activity (Vmax = 1.3 pmol T converted/h/mg protein) was lower than in the dove. Aromatase inhibition by CGS 16949A is more potent in the neonatal gerbil than in the dove (Kis of 0.03 and 0.60 nM, respectively, with A as substrate). We conclude that the imidazole is an effective aromatase inhibitor in both the adult and developing brain.  相似文献   

12.
Recently, we described the distribution of testosterone-metabolizing enzymes (i.e., aromatase, 5 alpha- and 5 beta-reductases) in the zebra finch (Taeniopygia guttata) brain using a sensitive radioenzyme assay combined to the Palkovits punch method. A number of sex-differences in the activity of these enzymes were observed especially in nuclei of the song-control system. The hormonal controls of these differences have now been analyzed by gonadectomizing birds of both sexes and by giving them a replacement therapy with silastic implants of testosterone (T). Five nuclei of the song system (Area X [X], nucleus magnocellularis of the anterior neostriatum [MAN], nucleus robustus archistriatalis [RA], nucleus intercollicularis [ICo], hyperstriatum ventrale, pars caudalis [HVc]) and three preoptic-hypothalamic areas (preoptic anterior [POA], periventricular magnocellular nucleus [PVM], and posterior medial hypothalamic nucleus [PMH]) were studied as well as other limbic and control non-steroid-sensitive areas. The activity of the 5 alpha-reductase was higher in males than in females for the five song-control nuclei and was not affected by the hormonal treatments. The overall activity of this enzyme was not sexually dimorphic in POA and PVM. It was higher in males than in females in intact birds only, and was reduced by gonadectomy and enhanced by T. The activity of the 5 beta-reductase was higher in females than in males in all nuclei of the song system and in POA, but was not influenced by the changes in T level. Both sex and treatment effects were observed in the control of aromatase. The production of estrogens was dimorphic (females greater than males) in RA and PMH. It was increased by T in POA, PVM, and PMH, and also in RA. These data show that some of the sex differences in T-metabolizing enzymes result from the exposure to different levels of T in adulthood (e.g., 5 alpha-reductase in POA and PVM or aromatase in PVM), whereas others persist even if birds are exposed to the same hormonal conditions. These are presumably the result of organizational effects of steroids. The steroid modulation of the aromatase might be related directly to the activation of sexual, aggressive, and nest-building behaviors, whereas the stable dimorphism in 5 alpha- and 5 beta-reductase observed in the nuclei of the song system might be one of the neurochemical bases of the sex differences in the vocal behavior of the zebra finch.  相似文献   

13.
Reproductive behavior is sexually differentiated in quail: The male-typical copulatory behavior is never observed in females even after treatment with high doses of testosterone (T). This sex difference in behavioral responsiveness to T is organized during the embryonic period by the exposure of female embryo to estrogens. We showed recently that the sexually dimorphic medial preoptic nucleus (POM), a structure that plays a key role in the activation of male copulatory behavior, is innervated by a dense steroid-sensitive network of vasotocin-immunoreactive (VT-ir) fibers in male quail. This innervation is almost completely absent in the female POM and is not induced by a chronic treatment with T, suggesting that this neurochemical difference could be organizational in nature. This idea was tested by injecting fertilized quail eggs of both sexes on day 9 of incubation with either estradiol benzoate (EB) (25 μg, a treatment that suppresses the capacity to show copulatory behavior in adulthood) or the aromatase inhibitor R76713 (10 μg, a treatment that makes adult females behaviorally responsive to T), or with the solvents as a control (C). At 3 weeks posthatch, all subjects were gonadectomized and later implanted with Silastic capsules filled with T. Two weeks later, all birds were perfused and brain sections were processed for VT immunocytochemistry. Despite the similarity of the adult endocrine conditions of the subjects (all were gonadectomized and treated with T Silastic implants providing the same plasma level of steroid to all subjects), major qualitative differences were observed in the density of VT-ir structures in the POM of the different groups. Dense immunoreactive structures (fibers and a few cells) were observed in the POM of C males but not females; EB males had completely lost this immunoreactivity (and lost the capacity to display copulatory behavior); and, conversely, R76713 females displayed a male-typical VT-ir system in the nucleus (and also high levels of copulatory behavior). Similar changes in immunoreactivity were seen in the nucleus of the stria terminalis and in the lateral septum (VT-ir fibers only in this case) but not in the magnocellular vasotocinergic system. These neurochemical changes closely parallel the effects of the embryonic treatments on male copulatory behavior. The vasotocinergic system of the POM can therefore be considered an accurate marker of the sexual differentiation of brain circuits mediating this behavior. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 684–699, 1998  相似文献   

14.
This paper examines the hypothesis that testosterone (T) produces its differ-entiative effect on the neonatal rat brain after undergoing conversion in situ to estradiol-17β (E2). We examined the abilities of an aromatizing enzyme inhibitor, (1,4,6-androstatriene-3,17-dione) (ATD), and an anti-estrogen, CI628, to inhibit sexual differentiation. Male and female rats were treated during the first few days of postnatal life with ATD or CI628, and females were treated on the following day with T in Silastic capsules or its propionate (TP) in oil. ATD and ATD+T females were normal with respect to time of vaginal opening, ovarian weight, ability to demonstrate an LH surge, and lordosis behavior. T and TP females were masculinized with respect to all these measures. CI628 and CI628+TP females had impaired ovarian function and intermediate lordosis quotients (LQs) compared to controls, though they were higher in both measures than T females. ATD males demonstrated high LQs in response to estradiol benzoate (EB) + progesterone, comparable to those of control females. CI628 males had intermediate LQs, which were significantly higher than those of control males. These results indicate that ATD can substantially protect the neonatal rat brain from the differentiative effects of exogenous or endogenous T, probably by blocking aromatization. CI628 affords only partial protection against T and produces a weak differentiative effect due to its own weak estrogenicity. Thus, aromatization of T in newborn rat brains appears to be essential if sexual differentiation is to occur.  相似文献   

15.
In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate cortex; and aromatase mRNA was detectable in brainstem and cerebellum, but levels were very low. In the amygdala, gonadal/hormonal status regulated aromatase expression in both sexes; in the BNST and POA, castration of males down-regulated aromatase, whereas there was no effect of estradiol in ovariectomized females. In the dorsal hippocampus and cingulate cortex, there were no differences in aromatase levels between males and females or effects of gonadal/hormonal status. These findings demonstrate that long-form aromatase is expressed in brain regions that respond acutely to estrogens, such as the dorsal hippocampus, and that gonadal/hormonal regulation of aromatase differs among different brain regions.  相似文献   

16.
Intracranial implantation of minute pellets of gonadal steroids was performed to determine neuroanatomical loci at which steroids activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, systemic treatment of castrated males with either testosterone propionate (TP) or estradiol benzoate (EB) restores male-typical copulatory behavior (head grabbing, mounting, and cloacal contact movements). In addition, EB activates female-typical receptive behavior (crouching). Adult male castrated quail were implanted intracranially with 300-micrograms pellets containing TP, EB, or cholesterol (CHOL) and behavior was tested with intact males and females. Either TP or EB pellets in the preoptic area (POA) activated male-typical copulatory behavior. Mounting was specifically activated without concomitant activation of other steroid-sensitive sexual and courtship behaviors. TP and EB implants in adjacent nuclei containing receptors for these steroids and CHOL implants in POA had no effect on male-typical copulatory behavior. Eighteen percent of all males tested for female-typical receptivity crouched, but no specific effect of EB was seen at any site. The similarity of the POA sites for activation of mounting by TP and EB is consistent with the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to behavioral activation.  相似文献   

17.
Expression of the enzyme aromatase, which converts androgens to estrogens, is known to be regulated by gonadal steroids in brain areas linked to reproduction and related behaviors in several groups of vertebrates. Previously, we demonstrated in a vocal fish, the plainfin midshipman, that both males and females undergo seasonal changes in brain aromatase mRNA expression in the preoptic area (POA) and the dimorphic sonic/vocal motor nucleus (SMN) that parallel seasonal variation in circulating steroid levels and reproductive behavior. We tested the hypothesis that steroids are directly responsible for seasonal modulation of aromatase in females because they show the most dramatic fluctuations of testosterone (T) and 17beta-estradiol (E2) throughout the year. Adult female midshipmen were ovariectomized and administered T, E2, or blank (control) implants. We then quantified aromatase mRNA expression within the POA and SMN by in situ hybridization. Both T- and E2-treated females had elevated mRNA expression levels in both brain areas compared to controls. T affected aromatase expression in a level-dependent manner, whereas E2 showed a decreased effect at higher circulating levels. This study demonstrates that seasonal differences in brain aromatase expression in female midshipman fish may be explained, in part, by changes in levels of circulating steroids.  相似文献   

18.
Many studies have demonstrated that male aggression is regulated by testosterone. The conversion of testosterone to estradiol by brain aromatase is also known to regulate male aggression in the breeding season. Male song sparrows (Melospiza melodia morphna) are territorial not only in the breeding season, but also in the nonbreeding season, when plasma testosterone and estradiol levels are basal. Castration has no effect on nonbreeding aggression. In contrast, chronic (10 day) aromatase inhibitor (fadrozole) treatment decreases nonbreeding aggression, indicating a role for estrogens. Here, we show that acute (1 day) fadrozole treatment decreases nonbreeding territoriality, suggesting relatively rapid estrogen effects. In spring, fadrozole decreases brain aromatase activity, but acute and chronic fadrozole treatments do not significantly decrease aggression, although trends for some behaviors approach significance. In gonadally intact birds, fadrozole may be less effective at reducing aggression in the spring. This might occur because fadrozole causes a large increase in plasma testosterone in intact breeding males. Alternatively, estradiol may be more important for territoriality in winter than spring. We hypothesize that sex steroids regulate male aggression in spring and winter, but the endocrine mechanisms vary seasonally.  相似文献   

19.
Many birds and mammals show changes in the hypothalamo-pituitary-gonadal (HPG) axis in response to social or sexual interactions between breeding partners. While alterations in GnRH neuronal activity play an important role in stimulating these changes, it remains unclear if acute behaviorally-induced alterations in GnRH release are accompanied by parallel changes in GnRH synthesis. To investigate this relationship, we examined changes in the activity of GnRH neurons in the brains of male ring doves following brief periods of courtship interactions with females. Such interactions have been previously shown to increase plasma LH in courting male doves at 24 h, but not at 1 h, after pairing with females. In the first study, males allowed to court females for 2 h had 60% more cells that showed immunocytochemical labeling for GnRH-I in the preoptic area (POA) of the hypothalamus than did control males that remained isolated from females. To determine whether an increase in GnRH gene expression preceded this increase in GnRH immunoreactivity in the POA, changes in the number of cells with detectable GnRH-I mRNA in the POA were measured by in situ hybridization following a 1 h period of courtship interactions with females. In this second study, courting males exhibited 40% more cells with GnRH-I in this region than did isolated control males. GnRH-immunoreactive neurons in two other diencephalic regions failed to show these courtship-induced changes. Plasma LH was not elevated after 1 or 2 h of courtship. These results demonstrate that the release of GnRH-I in the POA that is presumably responsible for courtship-induced pituitary and gonadal activation is accompanied by a rapid increase in GnRH synthesis that occurs before plasma LH levels increase. We suggest that this increase in GnRH synthesis is necessary to support the extended period of HPG axis activation that is seen in this species during the 5–10 day period of courtship and nest building activity.  相似文献   

20.
A new triazole derivative, R76713 (6-[4-chlorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1-methyl-1H- benzotriazole), was recently shown to inhibit aromatase selectively without affecting other steroid-metabolizing enzymes and without interacting with estrogen, progestin, or androgen receptors. This compound was tested for its capacity to intefere with the induction of copulatory behavior by testosterone (T) in castrated Japanese quail (Coturnix coturnix japonica). In a first experiment, R76713 inhibited (range 0.01 to 1 mg/kg) the activation of sexual behavior by T silastic implants and hypothalamic aromatase activity in castrated male quail in a dose-dependent manner. The 5 alpha- and 5 beta- reductases of T were not systematically affected. Stereotaxic implantation of R76713 in the medial preoptic area similarly blocked the behavior activated by systemic treatment with T, demonstrating that central aromatization of androgen is implicated in the activation of behavior. These inhibiting effects of R76713 on behavior were observed when implants were placed in the medial part of the nucleus preopticus medialis, confirming the implication of this brain area in the control of male copulatory behavior. Finally, the behavioral inhibition produced by R76713 could be reversed by simultaneous treatment with a dose of estradiol, which was not behaviorally effective by itself. This suggests that the behavioral deficit induced by the inhibitor was specifically due to the suppression of estrogen production. This also shows that the activation of copulatory behavior probably results from the interaction of androgens and estrogens at the brain level, as the two treatments separately providing these hormonal stimuli (T with the aromatase inhibitor on one hand and a low dose of estradiol on the other hand) had almost no behavioral effects but they synergized to activate copulation when given concurrently. These data confirm the critical role of preoptic aromatase in the activation of reproductive behavior and demonstrate that R76713 is a useful tool for the in vivo study of estrogen-dependent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号