首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiocyl (sodium thiosalicylate) belongs to a salicylate group of drugs, thus it has analgesic, antipyretic and anti-inflammatory effects. It possesses metal chelating function because it also belongs to a thiol-containing group of compounds which are well-known chelators. The studies of our research group showed that thiocyl is a promising chelator of lead poisoning due to its antioxidant and metal-chelating abilities. To the best of our knowledge, no methods were currently available for measuring thiocyl in biological samples. Therefore, we developed a reversed-phase HPLC method using fluorescence detection (lambdaex = 365 nm, lambdaem = 445 nm) with a one-step derivatizing reaction between thiocyl and a derivatizing agent-ThioGlo 3 (9-acetoxy-2-(4-(2, 5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)pyenyl)-3-oxo-3H-naphtho[2,1-b]pyran). Most biological thiols (such as N-acetylcysteine (NAC), cysteine (CYS), glutathione (GSH) and homocysteine (HCYS)) do not interfere with the detection of thiocyl by using this technique. The linear range of its calibration curve was determined to be 25-2500 nM, and the detection limit of thiocyl was found to be 3 nM with 20 microL injection volume. The coefficients of variation (CV) for within-run precision and between-run precision ranged from 0.93 to 7.21%. This assay proved to be a rapid, sensitive and simple method for determining thiocyl in biological samples.  相似文献   

2.
Concentrations of 9-cis beta-carotene (9-cis betaC) and zeta-carotene (zetaC) in biological samples may provide crucial information on the biological activities of these carotenoids. However, in high-performance liquid chromatography (HPLC) these carotenoids are often co-eluted. Therefore, there is an urgent need to develop a method for 9-cis betaC and zetaC quantitation. Both 9-cis betaC and zetaC have peak absorbance at 400 and 450 nm, respectively, whereas only 9-cis betaC has peak absorbance at 475 nm. We developed a HPLC method to quantitate 9-cis betaC and zetaC by using peak absorbance ratios. The 9-cis betaC/zetaC peak area was monitored at 475, 450 and 400 nm. The 9-cis betaC was quantified by using absorbance value at 475 nm; zetaC was then calculated from the 9-cis betaC/zetaC peak at 400 nm by subtracting 9-cis betaC contribution at 400 nm using the 400-nm/475-nm peak absorbance ratio of 9-cis betaC (0.39). This method was applied to determine 9-cis betaC and zetaC concentrations in serum and breast milk samples (n=12) from American lactating women and serum and breast adipose tissue samples (n=16) from Korean women with either benign or malignant breast tumors. 9-cis betaC concentrations in serum and breast milk of American women, and serum and adipose tissue of Korean women were 7.1+/-0.8 and 1.1+/-0.2 nM, and 15.6+/-1.1 nM and 0.2+/-0.1 nmol/g, respectively. zetaC concentrations in the above samples were 54.2+/-7.2 and 8.3+/-1.8 nM, and 49.0+/-3.9 nM and 0.3+/-0.1 nmol/g, respectively.  相似文献   

3.
High-performance liquid chromatography (HPLC) with fluorescence detection has been developed for the simultaneous determination of sympathomimetic amines including ephedrine, norephedrine, 2-phenylethylamine, 4-bromo-2,5-dimethoxyphenylethylamine, phentermine (Phen) and -fenfluramine (Fen) in spiked human plasma. Furthermore, an enantioselective HPLC method for the separation of -Fen (dexfenfluramine) and -Fen (levofenfluramine) in addition to their active metabolites - and -norfenfluramine (Norf) is described. The detection was achieved at emission wavelength of 430 nm with excitation wavelength of 325 nm for both methods. The analytes were extracted from plasma (100 μl) at pH 10.6 with ethyl acetate using fluoxetine as the internal standard. The extracts were evaporated and derivatized with the fluorescence reagent 4-(4,5-diphenyl-1H-imidazole-2-yl)benzoyl chloride in the presence of carbonate buffer (pH 9.0). A gradient separation was achieved on a C18 column for the achiral separation or on a Chiralcel OD-R column for the chiral separation. The methods were fully validated, and shown to have excellent linearity, sensitivity and precision. The chiral method has been applied for the determination of - and -enantiomers of Fen and Norf, in addition to Phen in rat plasma after an intraperitoneal administration of -Fen and Phen, simultaneously.  相似文献   

4.
SCH 56592 is a novel triazole antifungal agent that is active both orally and intravenously in animal models of infection. This compound is in Phase II-III clinical trials for the treatment of systemic fungal infections. SCH 56592 is a single enantiomer with four stereogenic centers; therefore, it was necessary to evaluate the possible chiral inversion of this drug candidate in animals and humans. Thus, chiral high-performance liquid chromatographic (HPLC) methods have been developed to separate SCH 56592 from its diastereomers and to evaluate its chiral inversion in rats, dogs, cynomolgus monkeys, and humans. Chiral HPLC analysis involved the use of a Chiralcel OD column set at 39 degrees C with a mobile phase of hexane-ethanol-diethylamine and a fluorescence detector set at an excitation wavelength of 270 nm and an emission wavelength of 390 nm. Plasma or serum samples were subjected to solid phase extraction on a C(2) cartridge followed by HPLC analysis. The method was sensitive with a limit of quantitation of 0.1 microg/ml in dog serum. The linearity was satisfactory, as shown by correlations of >0.997 and by visual examination of the calibration curves. The precision and accuracy were satisfactory, as indicated by coefficients of variation (CV) ranging from 1.1 to 12.1% and bias values ranging from -11.0 to 9.0%. Chiral HPLC analysis indicated that SCH 56592 was not subjected to chiral inversion in rats, dogs, cynomolgus monkeys, and humans.  相似文献   

5.
A procedure for the assay of methylglyoxal in biological systems is described, together with sample storage, sample processing procedures, and statistical evaluation. Specimen data are presented. Methylglyoxal was assayed by derivatization with 1,2-diamino-4,5-dimethoxybenzene and high-performance liquid chromatography (HPLC) of the resulting quinoxaline, 6,7-dimethoxy-2-methylquinoxaline, with spectrophotometric or fluorescence detection. Derivatization, solid-phase extraction, and HPLC were performed under acid conditions to prevent the spontaneous formation of methylglyoxal from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate during the assay. The limits of detection in the biological matrix were 45 pmol (absorbance detection) and 10 pmol (fluorimetric detection), the recovery was 58%, and the intra- and interbatch coefficients of variance were 7.7 and 30.0%, respectively. The concentration of methylglyoxal in whole blood from normal healthy human individuals was (mean +/- SE, nM) 256 +/- 92 (n = 12) and that from diabetic patients was 479 +/- 49 (n = 55), showing a significant increase in diabetes mellitus (P < 0.01; Mann-Whitney U test). Sample processing under acidic conditions was essential to avoid interferences. Previous estimates of the concentration of methylglyoxal in biological samples require re-evaluation.  相似文献   

6.
In order to improve the sensitivity and stability of human blood samples containing WR-1065 (i.e., active metabolite of the cytoprotective agent amifostine), a high-performance liquid chromatographic method was developed and validated using fluorescent derivatization with ThioGlo3. Using a sample volume of only 100 microl, the method was specific, sensitive (limit of quantitation=10 nM in deproteinized blood or 20 nM in whole blood), accurate (error < or = 3.2%) and reproducible (CV < or = 8.7%). In addition, the stability of WR-1065 in deproteinized and derivatized blood samples was assured for at least four weeks at -20 degrees C. This method should be particularly valuable in translating the kinetic-dynamic relationship of WR-1065 in preclinical models to that in cancer patients.  相似文献   

7.
2-Mercaptoethylamine (cysteamine) is an aminothiol compound used as a drug for the treatment of cystinosis, an autosomal recessive lysosomal storage disorder. Because of cysteamine's important role in clinical settings, its analysis by sensitive techniques has become pivotal. Unfortunately, the available methods are either complex or labor intensive. Therefore, we have developed a new rapid, sensitive, and simple method for determining cysteamine in biological samples (brain, kidney, liver, and plasma), using N-(1-pyrenyl) maleimide (NPM) as the derivatizing agent and reversed-phase high performance liquid chromatography (HPLC) with a fluorescence detection method (lambda(ex)=330 nm, lambda(em)=376 nm). The mobile phase was acetonitrile and water (70:30) with acetic acid and o-phosphoric acid (1 mL/L). The calibration curve for cysteamine in serine borate buffer (SBB) was found to be linear over a range of 0-1200 nM (r(2)=0.9993), and in plasma and liver matrix, the r(2) values were 0.9968 and 0.9965, respectively. The coefficients of the variation for the within-run and between-run precisions ranged from 0.68 to 9.90% and 0.63 to 4.17%, respectively. The percentage of relative recovery ranged from 94.1 to 98.6%.  相似文献   

8.
The importance of thiols has stimulated the development of a number of methods for determining glutathione and other biologically significant thiols. Methods that are currently available, however have some limitations, such as being time consuming and complex. In the present study, a new high-performance liquid chromatography (HPLC) method for determining biological thiols was developed by using 9-Acetoxy-2-(4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)phenyl)-3-oxo-3H-naphtho[2,1-b]pyran (ThioGlo™3) as a derivatizing agent. ThioGlo™ reacts selectively and rapidly with the thiols to yield fluorescent adducts which can be detected fluorimetrically (λex=365 nm, λem=445 nm). The within-run coefficient of variation for glutathione (GSH) by this method ranges from 1.08 to 2.94% whereas the between-run coefficient of variation for GSH is 4.31–8.61%. For GSH, the detection limit is around 50 fmol and the GSH derivatives remain stable for 1 month, if kept at 4°C. Results for GSSG and cysteine are also included. The ThioGlo™ method is compared to our previous method in which N-(1-pyrenyl)maleimide (NPM) is used to derivatize thiol-containing compounds. The present method offers various advantages over the currently accepted techniques, including speed and sensitivity.  相似文献   

9.
5-Hydroxytryptamine (5-HT) displays a sixfold higher affinity for 5-HT2 binding sites labeled by [3H]ketanserin in rat (IC50 = 200 +/- 40 nM) and human (IC50 = 190 +/- 50 nM) cortex than for 5-HT2 sites in bovine cortex (IC50 = 1,200 +/- 130 nM). The Hill slopes of the 5-HT competition curves are 0.67 +/- 0.04 in rat, 0.69 +/- 0.08 in human, and 0.96 +/- 0.02 in bovine cortex. Scatchard analysis of (+/-)-[3H]4-bromo-2,5-dimethoxyamphetamine ([3H]DOB) binding in the rat indicates a population of binding sites with a KD of 0.38 +/- 0.04 nM and a Bmax of 1.5 +/- 0.05 pmol/g tissue. In contrast, specific [3H]DOB binding cannot be detected in bovine cortical membranes. These data indicate that species variations exist in 5-HT2 binding site subtypes and that [3H]ketanserin appears to label a homogeneous population of 5-HT2 binding site subtypes in bovine cortex.  相似文献   

10.
O-Hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) is a chiral organophosphorus compound that undergoes enzymatic hydrolysis in the rat and hen. Studies of the stereospecificity of its biodegradation are necessary to establish HDCP toxicity. To this effect, methods have been developed for the analysis of the HDCP stereoisomers by gas chromatography (GC) and high-performance liquid chromatography (HPLC). The best resolution and analysis were obtained by HPLC with UV detection, a OA-4100 Techocel chiral column and the mobile phase: hexane—1,2-dichloroethane—ethanol (92:5:3, v/v/v). The detection limit was 25 μM for HDCP and 5 μM for one of its hydrolytic products: 2,5-dichlorophenol (DCP). The method was reproducible intra o inter die. Moreover, a method is described for the liquid extraction of HDCP and DCP with 1,2-dichloroethane in biological samples, with a yield of (80.3 ± 9.7)% (n = 10, S.D.) for HDCP and (84.1 ± 10.0)% (n = 10, S.D.) for DCP. The method is compared with the solid-phase extraction technique with C18 sorbent. The hydrolysis of HDCP by hen plasma is studied.  相似文献   

11.
A highly sensitive and precise high-performance liquid chromatography (HPLC) assay was developed and validated for the quantitation of Z-2-[4-(4-chloro-1,2-diphenyl-but-1-enyl) phenoxy]ethanol (FC-1271a) in human plasma. Plasma samples (1.0 ml) containing FC-1271a and internal standard (toremifene citrate; Fareston®) were extracted using a 2% 1-butanol, 98% hexane solution with an extraction efficiency of >97%. Samples were reconstituted in methanol, irradiated with high intensity ultraviolet light (254 nm) for 1 min, and injected onto a C18 reverse phase column. Samples were eluted isocratically at a flow-rate of 0.5 ml/min with a mobile phase consisting of 6.5% water and 0.5% triethylamine in methanol. The fluorescence of photochemically activated compounds was detected using a fluorometer set at an excitation wavelength of 266 nm and emission wavelength of 370 nm. Under these assay conditions, standard calibration curves were linear through a concentration range of 10–400 ng/ml. In summary, we have developed and validated an HPLC assay to quantitate FC-1271a in human plasma.  相似文献   

12.
A highly sensitive method for the determination of cholesterol in biological fluids is described. Unsaponifiable lipids from rat serum and thoracic duct lymph chylomicron samples were treated with cholesterol oxidase. The product of the enzymatic reaction, Δ4-cholestenone, was analysed by normal-phase high-performance liquid chromatography (HPLC) using hexane—isopropanol (95:5, v/v) as a mobile phase and detected with a UV spectrophotometer at 240 nm. When the standard samples containing varying amounts of cholesterol (0.15–3 nmol) were treated with cholesterol oxidase and analysed by HPLC (injected amounts 0.09–1.8 nmol of cholesterol), the peak areas increased proportionally with the amounts of authentic cholesterol with a correlation coefficient of 0.996. The values in these biological fluids determined by the HPLC method were identical to those obtained by enzymatic—colorimetric or gas chromatographic methods. Moreover, the detection limit (0.09 nmol) of the present method (0.15 nmol are required for the sample preparation) is lower than those of conventional methods (approximately 30 nmol). Because of the excellent sensitivity and reproducibility, this method is well suited for the determination of cholesterol in biological fluids where cholesterol concentration is low.  相似文献   

13.
A simple and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the determination of five different quinolones: enrofloxacin, ciprofloxacin, sarafloxacin, oxolinic acid and flumequine in pork and salmon muscle. The method includes one extraction and clean-up step for the five quinolones together which are detected in two separated HPLC runs by means of their fluorescence. The proposed analytical method involves homogenizing of the tissue sample with 0.05 M phosphate buffer, pH 7.4 and clean-up by Discovery DS-18 cartridges. For chromatographic separation a Symmetry C(18) column is used in two different runs: (1) ciprofloxacin, enrofloxacin and sarafloxacin with acetonitrile-0.02 M phosphate buffer pH 3.0 (18:82) as mobile phase and the detector at excitation wavelength: 280 nm and emission wavelength 450 nm; and (2) oxolinic acid and flumequine with acetonitrile-0.02 M phosphate buffer pH 3.0 (34:66) as mobile phase and excitation wavelength: 312 nm and emission wavelength: 366 nm. Detection limit was as low as 5 ng g(-1), except for sarafloxacin which had a limit of 10 ng g(-1). Standard curves using blank muscle tissues spiked at different levels showed a good linear correlation coefficient, r(2) higher than 0.999 for all quinolones.  相似文献   

14.
A rapid and simple background-free high-performance liquid chromatographic (HPLC) approach has been developed for simultaneously determining free thiol compounds including coenzyme A (CoA), cysteine (Cys), glutathione (GSH) and N-acetyl-cysteine (NAC) in biological samples by using 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide) difluoroboradiaza-s-indacene (TMPAB-o-M) as fluorogenic reagent. After derivatization under physiological conditions within 6 min, baseline separation was finished in just 6 min using isocratic elution with reversed-phase HPLC and fluorescence detection. Excellent linearity was observed for all analytes over their concentration ranges of 1-500 nM and detection limits ranging 0.13 nM for CoA to 0.25 nM for Cys (S/N=3) were achieved. The utility of the proposed method has been validated by measuring thiol compounds mentioned above in tissue, fluid and cell samples. The results indicated that this approach was well suited for high-throughput quantitative determination of thiols and study of the physiological role of them.  相似文献   

15.
Chemical uncouplers diacetyl monoxime (DAM) and cytochalasin D (cyto-D) are used to abolish cardiac contractions in optical studies, yet alter intracellular Ca(2+) concentration ([Ca(2+)](i)) handling and vulnerability to arrhythmias in a species-dependent manner. The effects of uncouplers were investigated in perfused mouse hearts labeled with rhod-2/AM or 4-[beta-[2-(di-n-butylamino)-6-naphthyl]vinyl]pyridinium (di-4-ANEPPS) to map [Ca(2+)](i) transients (emission wavelength = 585 +/- 20 nm) and action potentials (APs) (emission wavelength > 610 nm; excitation wavelength = 530 +/- 20 nm). Confocal images showed that rhod-2 is primarily in the cytosol. DAM (15 mM) and cyto-D (5 microM) increased AP durations (APD(75) = 20.0 +/- 3 to 46.6 +/- 5 ms and 39.9 +/- 8 ms, respectively, n = 4) and refractory periods (45.14 +/- 12.1 to 82.5 +/- 3.5 ms and 78 +/- 4.24 ms, respectively). Cyto-D reduced conduction velocity by 20% within 5 min and DAM by 10% gradually in 1 h (n = 5 each). Uncouplers did not alter the direction and gradient of repolarization, which progressed from apex to base in 15 +/- 3 ms. Peak systolic [Ca(2+)](i) increased with cyto-D from 743 +/- 47 (n = 8) to 944 +/- 17 nM (n = 3, P = 0.01) but decreased with DAM to 398 +/- 44 nM (n = 3, P < 0.01). Diastolic [Ca(2+)](i) was higher with cyto-D (544 +/- 80 nM, n = 3) and lower with DAM (224 +/- 31, n = 3) compared with controls (257 +/- 30 nM, n = 3). DAM prolonged [Ca(2+)](i) transients at 75% recovery (54.3 +/- 5 to 83.6 +/- 1.9 ms), whereas cyto-D had no effect (58.6 +/- 1.2 ms; n = 3). Burst pacing routinely elicited long-lasting ventricular tachycardia but not fibrillation. Uncouplers flattened the slope of AP restitution kinetic curves and blocked ventricular tachycardia induced by burst pacing.  相似文献   

16.
The performance of a new ELISA assay kit (DLD Diagnostika GmbH, Hamburg, Germany) for the determination of asymmetric dimethylarginine (ADMA) was evaluated against a reversed phase HPLC method. ADMA concentrations of 55 serum samples were measured with both methods. The intra-assay CV for ADMA-ELISA was 19% (n=10). Inter-assay CVs for ADMA-ELISA were 9% for kit control 1 (0.410+/-0.037 microM) and 14% for kit control 2 (1.174+/-0.165 microM). The intra- and inter-assay CVs for HPLC assay for ADMA were 2.5% (0.586+/-0.015 microM) and 4.2% (0.664+/-0.028 microM), respectively. There was no correlation between these two methods (R(2)=0.0972). The effect of storage conditions of the samples on ADMA concentrations was investigated by HPLC. ADMA concentration was stable after four freezing and thawing cycles. Overall, the HPLC method offered better sensitivity, selectivity and, very importantly, simultaneous determination of ADMA, SDMA, l-homoarginine and l-arginine.  相似文献   

17.
A high-performance liquid chromatographic method for determination of amodiaquine (AQ), desethylamodiaquine (DAQ), chloroquine (CQ) and desethylchloroquine (DCQ) in human whole blood, plasma and urine is reported. 4-(4-Dimethylamino-1-methylbutylamino)-7-chloroquinoline was used as internal standard. The drugs and the internal standard were extracted into di-isopropyl ether as bases and then re-extracted into an acidic aqueous phase with 0.1 M phosphate buffer at pH 4.0 for AQ samples and at pH 2.5 for CQ filter paper samples. A C(18) column was used and the mobile phase consisted of methanol-phosphate buffer (0.1 M, pH 3)-perchloric acid (250: 747.5:2.5, v/v). The absorbance of the drugs was monitored at 333 nm and no endogenous compound interfered at this wavelength. The limit of quantification in whole blood, plasma and urine was 100 nM for AQ and DAQ (sample size 100 microliter) as well as for CQ and DCQ in blood samples dried on filter paper. For 1000 microliter AQ and DAQ samples, the limit of quantification was 10 nM in all three biological fluids. The within-assay and between-assay coefficients of variations were always <10% at the limits of quantification. Plasma should be preferred for the determination of AQ and DAQ since use of whole blood may be associated with stability problems.  相似文献   

18.
This study evaluated the ability of A1 and A3 adenosine receptor (AR) agonism, and A1, A2A, A2B and A3AR antagonism (revealing "intrinsic" responses), to modify post-ischemic coronary dysfunction in mouse heart. Vascular function was assessed before and after 20 min global ischemia and 30-45 min reperfusion in Langendorff perfused C57/Bl6 mouse hearts. Ischemic insult impaired coronary sensitivity to the endothelial-dependent dilators ADP (pEC50=6.8+/-0.1 vs. 7.6+/-0.1, non-ischemic) and acetylcholine (pEC50=6.1+/-0.1 vs. 7.3+/-0.1 in non-ischemic), and for the mixed endothelial-dependent/independent dilator 2-chloroadenosine (pEC50=7.5+/-0.1 vs. 8.4+/-0.1, non-ischemic). Endothelium-independent dilation in response to nitroprusside was unaltered (pEC50=7.0+/-0.1 vs. 7.1+/-0.1 in non-ischemic). Pre-treatment with a selective A1AR agonist (50 nM CHA) failed to modify coronary dysfunction, whereas A1AR antagonism (200 nM DPCPX) worsened the effects of I/R (2-chloroadenosine pEC50=6.9+/-0.1). Conversely, A3AR agonism (100 nM Cl-IB-MECA) did reduce effects of I/R (pEC50s=8.0+/-0.1 and 7.3+/-0.1 for 2-chloroadenosine and ADP, respectively), whereas antagonism (100 nM MRS1220) was without effect. While A2AAR agonism could not be assessed (due to pronounced vasodilatation), A2AAR antagonism (100 nM SCH58261) was found to exert no effect, and antagonism of A2BARs (50 nM MRS1754) was also ineffective. The protective actions of A3AR agonism were also manifest as improved reactive hyperemic responses. Interestingly, post-ischemic coronary dysfunction was also limited by: Na+-H+ exchange (NHE) inhibition with 10 or 50 microM BIIB-513 (2-chloroadenosine pEC50s=7.8+/-0.1, either dose), an effect not additive with A3AR agonism; Ca2+ antagonism with 0.3 microM verapamil (2-chloroadenosine pEC50=7.9+/-0.1); and Ca2+ desensitization with 5 mM BDM (2-chloroadenosine pEC50=7.8+/-0.1). In contrast, endothelin antagonism (200 nM PD142893) and anti-oxidant therapy (300 microM MPG+150 U/ml SOD+600 U/ml catalase) were ineffective. Our data collectively confirm that ischemia selectively impairs endothelial function and reactive hyperemia independently of blood cells. Vascular injury is intrinsically limited by endogenous (but not exogenous) activation of A1ARs, whereas exogenous A3AR activation further limits dysfunction (improving post-ischemic vasoregulation). Finally, findings suggest this form of post-ischemic coronary injury is unrelated to endothelin or oxidant stress, but may involve modulation of Ca2+ overload and/or related ionic perturbations.  相似文献   

19.
To examine whether cardioprotection initiated by reactive oxygen species (ROS) is dependent on protein kinase Cepsilon (PKCepsilon), isolated buffer-perfused mouse hearts were randomized to four groups: 1) antimycin A (AA) (0.1 microg/ml) for 3 min followed by 10 min washout and then 30 min global ischemia (I) and 2 h reperfusion (R); 2) controls of I/R alone; 3) AA bracketed with 13 min of N-2-mercaptopropionyl- glycine (MPG) followed by I/R; and 4) MPG (200 microM) alone, followed by I/R. Isolated adult rat ventricular myocytes (ARVM) were exposed to AA (0.1 microg/ml), and lucigenin was used to measure ROS production. Murine hearts and ARVM were exposed to AA (0.1 microg/ml) with or without MPG, and PKCepsilon translocation was measured by cell fractionation and subsequent Western blot analysis. Finally, the dependence of AA protection on PKCepsilon was determined by the use of knockout mice (-/-) lacking PKCepsilon. AA exposure caused ROS production, which was abolished by the mitochondrial uncoupler mesoxalonitrile 4-trifluoromethoxyphenylhydrazone. In addition, AA significantly reduced the percent infarction-left ventricular volume compared with control I/R (26 +/- 4 vs. 43 +/- 2%; P < 0.05). Bracketing AA with MPG caused a loss of protection (52 +/- 7 vs. 26 +/- 4%; P < 0.05). AA caused PKCepsilon translocation only in the absence of MPG, and protection was lost on the pkcepsilon(-/-) background (38 +/- 3 vs. 15 +/- 4%; P < 0.001). AA causes ROS production, on which protection and PKCepsilon translocation depend. In addition, protection is absent in PKCepsilon null hearts. Our results imply that, in common with ischemic preconditioning, PKCepsilon is crucial to ROS-mediated protection.  相似文献   

20.
The development of the HIV protease inhibitor saquinavir (Ro 31-8959) required a range of analytical methods for its measurement in biological fluids. This paper describes the development of isocratic, reverse-phase HPLC/UV methods for the routine measurement of plasma levels of the drug together with a more sensitive radioimmunoassay. The performance of the two assays is compared with that of an HPLC/MS/MS method previously published and has been shown to be satisfactory, with coefficients of variation of calibration standards and quality control samples within the usual outside limits of +/- 15%. The HPLC/UV method can be routinely applied for concentrations down to 10-20 ng/ml and a lower limit of quantification of 1 ng/ml from 1 ml of human plasma is possible. The radioimmunoassay was developed for the specific measurement of saquinavir concentrations in human, HIV-positive plasma samples and has a lower limit of quantification of 0.5-1.0 ng/ml. Some preliminary findings suggested that it might not be specific in rat plasma and no attempts have been made to quantify any nonclinical samples with this technique. If still greater sensitivity is required, recourse can be made to the HPLC/MS/MS assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号