首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated) and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18–25 million years ago (Mya). CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7–12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them) to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function.  相似文献   

2.
Genes carry out their biological functions through pathways in complex networks consisting of many interacting molecules. Studies on the effect of network architecture on the evolution of individual proteins will provide valuable information for understanding the origin and evolution as well as functional conservation of signaling pathways. However, the relationship between the network architecture and the individual protein sequence evolution is yet little known. In current study, we carried out network-level molecular evolution analysis on TLR (Toll-like receptor ) signaling pathway, which plays an important role in innate immunity in insects and mammals, and we found that: 1) The selection constraint of genes was negatively correlated with its position along TLR signaling pathway; 2) all genes in TLR signaling pathway were highly conserved and underwent strong purifying selection; 3) the distribution of selective pressure along the pathway was driven by differential nonsynonymous substitution levels; 4) The TLR signaling pathway might present in a common ancestor of sponges and eumetazoa, and evolve via the TLR, IKK, IκB and NF-κB genes underwent duplication events as well as adaptor molecular enlargement, and gene structure and conservation motif of NF-κB genes shifted in their evolutionary history. Our results will improve our understanding on the evolutionary history of animal TLR signaling pathway as well as the relationship between the network architecture and the sequences evolution of individual protein.  相似文献   

3.
Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor approximately 18-25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions.  相似文献   

4.
Dendritic epidermal T cells, which express an invariant Vγ5Vδ1 T-cell receptor and account for 95% of all resident T cells in the mouse epidermis, play a critical role in skin immune surveillance. These γδ T cells are generated by positive selection in the fetal thymus, after which they migrate to the skin. The development of dendritic epidermal T cells is critically dependent on the Skint1 gene expressed specifically in keratinocytes and thymic epithelial cells, suggesting an indispensable role for Skint1 in the selection machinery for specific intraepithelial lymphocytes. Phylogenetically, rodents have functional SKINT1 molecules, but humans and chimpanzees have a SKINT1-like (SKINT1L) gene with multiple inactivating mutations. In the present study, we analyzed SKINT1L sequences in representative primate species and found that all hominoid species have a common inactivating mutation, but that Old World monkeys such as olive baboons, green monkeys, cynomolgus macaques and rhesus macaques have apparently functional SKINT1L sequences, indicating that SKINT1L was inactivated in a common ancestor of hominoids. Interestingly, the epidermis of cynomolgus macaques contained a population of dendritic-shaped γδ T cells expressing a semi-invariant Vγ10/Vδ1 T-cell receptor. However, this population of macaque T cells differed from rodent dendritic epidermal T cells in that their Vγ10/Vδ1 T-cell receptors displayed junctional diversity and expression of Vγ10 was not epidermis-specific. Therefore, macaques do not appear to have rodent-type dendritic epidermal T cells despite having apparently functional SKINT1L. Comprehensive bioinformatics analysis indicates that SKINT1L emerged in an ancestor of placental mammals but was inactivated or lost multiple times in mammalian evolution and that Skint1 arose by gene duplication in a rodent lineage, suggesting that authentic dendritic epidermal T cells are presumably unique to rodents.  相似文献   

5.
Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.  相似文献   

6.
Melanopsin is a photosensitive cell protein involved in regulating circadian rhythms and other non-visual responses to light. The melanopsin gene family is represented by two paralogs, OPN4x and OPN4m, which originated through gene duplication early in the emergence of vertebrates. Here we studied the melanopsin gene family using an integrated gene/protein evolutionary approach, which revealed that the rhabdomeric urbilaterian ancestor had the same amino acid patterns (DRY motif and the Y and E conterions) as extant vertebrate species, suggesting that the mechanism for light detection and regulation is similar to rhabdomeric rhodopsins. Both OPN4m and OPN4x paralogs are found in vertebrate genomic paralogons, suggesting that they diverged following this duplication event about 600 million years ago, when the complex eye emerged in the vertebrate ancestor. Melanopsins generally evolved under negative selection (ω = 0.171) with some minor episodes of positive selection (proportion of sites = 25%) and functional divergence (θI = 0.349 and θII = 0.126). The OPN4m and OPN4x melanopsin paralogs show evidence of spectral divergence at sites likely involved in melanopsin light absorbance (200F, 273S and 276A). Also, following the teleost lineage-specific whole genome duplication (3R) that prompted the teleost fish radiation, type I divergence (θI = 0.181) and positive selection (affecting 11% of sites) contributed to amino acid variability that we related with the photo-activation stability of melanopsin. The melanopsin intracellular regions had unexpectedly high variability in their coupling specificity of G-proteins and we propose that Gq/11 and Gi/o are the two G-proteins most-likely to mediate the melanopsin phototransduction pathway. The selection signatures were mainly observed on retinal-related sites and the third and second intracellular loops, demonstrating the physiological plasticity of the melanopsin protein group. Our results provide new insights on the phototransduction process and additional tools for disentangling and understanding the links between melanopsin gene evolution and the specializations observed in vertebrates, especially in teleost fish.  相似文献   

7.
There is limited knowledge of the neurotoxin gene diversity among Clostridium botulinum type Ab strains. Only the sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene in C. botulinum type Ab strain CDC588 have been reported. In this study, we sequenced the entire bont/A- and bont/B-associated neurotoxin gene clusters of C. botulinum type Ab strain CDC41370 and the bont/A gene of strain CDC588. In addition, we analyzed the organization of the neurotoxin gene clusters in strains CDC588 and CDC1436. The bont/A nucleotide sequence of strain CDC41370 differed from those of the known bont/A subtypes A1 to A4 by 2 to 7%, and the predicted amino acid sequence differed by 4% to 14%. The bont/B nucleotide sequence in strain CDC41370 showed 99.7% identity to the sequence of subtype B1. The bont/A nucleotide sequence of strain CDC588 was 99.9% identical to that of subtype A1. Although all of the C. botulinum type Ab strains analyzed contained the two sets of neurotoxin clusters, similar to what has been found in other bivalent strains, the intergenic spacing of p21-orfX1 and orfX2-orfX3 varied among these strains. The type Ab strains examined in this study had differences in their toxin gene cluster compositions and bont/A and bont/B nucleotide sequences, suggesting that they may have arisen from separate recombination events.Clostridium botulinum is a gram-positive anaerobic bacterium that produces an extremely potent toxin, the botulinum neurotoxin (BoNT). There are seven serologically distinct types of BoNT (serotypes A through G). Although most strains of C. botulinum express a single toxin serotype, some isolates have been shown to produce more than one, namely, Ab, Af, Ba, and Bf (11). In addition, many strains designated type A by mouse bioassay harbor nucleotide sequences for both type A and B toxins (6). These strains have been designated A(B) to indicate the presence of the bont/B gene without type B-specific toxicity.Based on phylogenetic analysis of the neurotoxin gene sequences, four subtypes have been identified within serotype A and five subtypes within serotype B (12). The neurotoxin gene nucleotide sequences of these subtypes differ by up to 8%, and the predicted amino acid sequences differ by up to 16%. In addition, the genes encoding components of the toxin complexes are arranged in clusters that differ in composition and organization (14) (Fig. (Fig.1).1). The toxin gene cluster of subtype A1 (termed ha cluster) includes the gene encoding the nontoxic nonhemagglutinin (ntnh), a regulatory gene (botR), and an operon encoding three hemagglutinins (ha70, ha33, and ha17). The toxin gene clusters containing bont/A2 or bont/A3 (termed orfX cluster) include the ntnh and p21 (analogous to botR) genes and several genes of unknown function (orfX1, orfX2, orfX3, and p47). Type Ba and A(B) strains contain two sets of neurotoxin cluster genes in which ha70, ha33, and ha17 are associated with the bont/B gene, and orfX1, orfX2, orfX3, and p47 are associated with the bont/A gene. In addition, some A1 strains contain a neurotoxin gene cluster that is similar to those in A2 and A3, but the bont/A nucleotide sequence is 99.9% identical to that in other A1 strains. These strains have been designated HA Orfx+ A1 (14). The neurotoxin gene cluster in type B strains includes the ntnh, botR, ha70, ha33, and ha17 genes. Notably, no differences in the neurotoxin gene cluster arrangements among the subtypes within serotype B have been reported.Open in a separate windowFIG. 1.Toxin gene cluster arrangements for BoNT type A-producing strains, including Ab, A(B), and Ba strains.Although several studies have described the organization and the nucleotide sequences of the neurotoxin gene cluster components among type A and B strains [including type Ba and A(B) strains], there is limited information regarding the diversity of the neurotoxin cluster genes among C. botulinum type Ab strains. The nucleotide sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene of C. botulinum type Ab strain CDC588 have been previously reported; strain CDC1436 harbors a bont/A2 gene, and both strains CDC1436 and CDC588 harbor a bont/bvB gene (12, 15). Four additional type Ab strains from Italy have been analyzed by a restriction fragment length polymorphism method to determine the bont/A and bont/B subtypes (7, 9). To the best of our knowledge, the complete nucleotide sequences of the neurotoxin gene clusters in C. botulinum type Ab strains have not been reported. Thus, the objective of this study was to analyze the neurotoxin gene cluster composition in three C. botulinum type Ab strains (CDC41370, CDC588, and CDC1436) available in the CDC strain collection. We report differences in bont/A gene sequence among type Ab strains, including the identification of a novel bont/A nucleotide sequence in strain CDC41370, and describe differences in the organization of the neurotoxin gene clusters among these strains.  相似文献   

8.
The MPS1 gene from Saccharomyces cerevisiae encodes an essential protein kinase required for spindle pole body (SPB) duplication and for the mitotic spindle assembly checkpoint. Cells with the mps1-1 mutation fail early in SPB duplication and proceed through monopolar mitosis with lethal consequences. We identified CDC37 as a multicopy suppressor of mps1-1 temperature-sensitive growth. Suppression is allele specific, and synthetic lethal interactions occur between mps1 and cdc37 alleles. We examined the cdc37-1 phenotype for defects related to the SPB cycle. The cdc37-1 temperature-sensitive allele causes unbudded, G1 arrest at Start (Reed, S.I. 1980. Genetics. 95: 561–577). Reciprocal shifts demonstrate that cdc37-1 arrest is interdependent with α-factor arrest but is not a normal Start arrest. Although the cells are responsive to α-factor at the arrest, SPB duplication is uncoupled from other aspects of G1 progression and proceeds past the satellite-bearing SPB stage normally seen at Start. Electron microscopy reveals side-by-side SPBs at cdc37-1 arrest. The outer plaque of one SPB is missing or reduced, while the other is normal. Using the mps2-1 mutation to distinguish between the SPBs, we find that the outer plaque defect is specific to the new SPB. This phenotype may arise in part from reduced Mps1p function: although Mps1p protein levels are unaffected by the cdc37-1 mutation, kinase activity is markedly reduced. These data demonstrate a requirement for CDC37 in SPB duplication and suggest a role for this gene in G1 control. CDC37 may provide a chaperone function that promotes the activity of protein kinases.  相似文献   

9.
10.
When cycloheximide is added to (B12)-deficient cultures before or after replenishment of the cells with B12, reversion of these cells is inhibited. This inhibition is not caused by interference of the inhibitor in the uptake of B12 as measured by division kinetics. Cycloheximide does not inhibit the initial increase in the rate of DNA synthesis caused by B12 replenishment, but within 30–45 min the rate decreases and DNA synthesis ceases. Cycloheximide added to replenished deficient cells after completion of DNA duplication inhibits cell division. The total cellular protein and RNA in replenished cells treated with cycloheximide does not change. B12 added to deficient cells does not stimulate the incorporation of [14C]leucine into protein during resumption and completion of DNA duplication. However, there is a large increase in [14C]leucine incorporation into the protein of these cells soon after completion of DNA duplication and before resumption of cell division. The addition of cycloheximide to B12-replenished or to nonreplenished deficient cells rapidly inhibits the incorporation. We suggest that the addition of B12 accelerates the rate of DNA synthesis in the deficient cells and that possibly no new protein synthesis is required except for mitosis. However, protein synthesis is needed for continuous DNA synthesis.  相似文献   

11.
Gene phylogenetic trees were constructed by the maximum parsimony method for various sets of ninety six globin chain amino acid sequences spanning plant and animal kingdoms. The method, executed by several computer programs, constructed ancestor and descendant globin messengers on tree topologies which required the least number of nucleotide replacements to account for the evolution of the globins. The human myoglobin-hemoglobin divergence was traced to a gene duplication which occurred either in the first vertebrates or earlier yet in the common ancestor of chordates and annelids, the alpha-beta divergence to a gene duplication in the common ancestor of teleosts and tetrapods, the gamma divergence from typical beta chains to a gene duplication in basal therian mammals, and the delta separation from beta to a duplication in the basal catarrhine primates. Evidence was provided by the globin phylogenies for the hominoid affinities of the gibbon and the close phyletic relationship of the African apes to man. Over the period of teleos-tetrapod divergence the globin messengers evolved at an average rate of 18.5 nucleotide replacements per 100 codons per 108 years, a faster rate than most previous estimates. Very fast and very slow rates were encountered in different globin lineages and at different stages of descent, reducing the effectiveness of globins as molecular clocks. Rates increased with gene duplication and decreased after selection discovered useful specializations in the products of genes which had previously been freer to accept mutations. The early eutherian radiation was characterized by rapid rates of globin evolution, but the later hominoid radiation by extremely slow rates. This pattern was related to more complicated grades of internal organization evolving in human ancestors. The types of nucleotide replacements in the globin messengers over the long course of globin evolution did not seem indicative of any special mutational mechanisms.  相似文献   

12.
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α2β2). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.  相似文献   

13.
14.
15.
16.
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.  相似文献   

17.
A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4 coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor (∼30 Mya) and the emergence of SERPINB3 in Homininae (∼9 Mya). We detected evidence of strong positive selection throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1). Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1. A scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent inhibitors of exogenous proteases, released by infectious agents. Finally, similar patterns of expression and the sharing of many regulatory motifs suggest neofunctionalization as the best fitted model of the functional divergence of SERPINB3 and B4 duplicates.  相似文献   

18.
Pretreatment serum levels of interferon-γ-inducible protein-10 (IP-10, CXCL10) and dipeptidyl peptidase-4 (DPP IV) predict treatment response in chronic hepatitis C (CHC). The association between functional genetic polymorphisms of CXCL10 and DPP4 and treatment outcome has not previously been studied. This study aimed to determine the association between genetic variations of CXCL10 and DPP4 and the outcome of treatment with pegylated interferon-α (PEG-IFN-α) based therapy in Thai patients with CHC. 602 Thai patients with CHC treated using a PEG-IFN-α based regimen were genotyped for CXCL10 rs56061981 G>A and IL28B rs12979860 C>T. In addition, in patients infected with CHC genotype 1, DPP4 (rs13015258 A>C, rs17848916 T>C, rs41268649 G>A, and rs 17574 T>C) were genotyped. Correlations between single nucleotide polymorphisms, genotype, and treatment response were analyzed. The rate of sustained virologic response (SVR) was higher for the CC genotype of IL28B rs12979860 polymorphisms than for non-CC in both genotype 1 (60.6% vs. 29.4%, P < 0.001) and non-genotype 1 (69.4% vs. 49.1%, P < 0.05) CHC. SVR was not associated with the CXCL10 gene variant in all viral genotypes or DPP4 gene polymorphisms in viral genotype1. Multivariate analysis revealed IL28B rs12979860 CC genotype (OR = 3.12; 95% CI, 1.72–5.67; P < 0.001), hepatitis C virus RNA < 400,000 IU/ml (OR = 2.21; 95% CI, 1.22–3.99, P < 0.05), age < 45 years (OR = 2.03; 95% CI, 1.11–3.68; P < 0.05), and liver fibrosis stage 0–1 (OR = 1.64; 95% CI, 1.01–2.65, P < 0.05) were independent factors for SVR. Unfavorable IL28B rs12979860 CT or TT genotypes with the CXCL10 rs56061981 non-GG genotype were associated with a higher SVR than GG genotype (66.7% vs. 33.0%, P = 0.004) in viral genotype 1. In Thai CHC genotype 1 infected patients with an unfavorable IL28B rs12979860 CT/TT genotype, the complementary CXCL10 polymorphism strongly enhances prediction of treatment response.  相似文献   

19.

Background

Data on the association between the interleukin-1 (IL-1) gene polymorphisms and Graves'' disease (GD) risk were conflicting. A meta-analysis was undertaken to assess this association.

Methods

We searched for case-control studies investigating the association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk. We extracted data using standardized forms and calculated odds ratios (OR) with 95% confidence intervals (CI).

Results

A total of 11 case-control studies were included in this meta-analysis. Available data indicated that the IL1B (-511) polymorphism was associated with GD risk in the overall populations (Caucasians and Asians) in homozygote model (TT vs. CC, OR = 0.86, 95% CI: 0.76–0.97, Pz = 0.015), but not in dominant and recessive models (TT+TC vs. CC: OR = 0.95, 95% CI: 0.81–1.12, Pz = 0.553 and TT vs. TC+CC: OR = 0.82, 95% CI: 0.60–1.12, Pz = 0.205, respectively). No association between the IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk was found in the overall populations in any of the genetic models. In subgroup analyses according to ethnicity, the IL1B (-511) polymorphism was associated with GD risk in Asians in recessive and homozygote models (TT vs. TC+CC: OR = 0.68, 95% CI: 0.55–0.84, Pz<0.001 and TT vs. CC: OR = 0.81, 95% CI: 0.70–0.93, Pz = 0.003, respectively), but not in dominant model (TT+TC vs. CC: OR = 0.92, 95% CI: 0.77–1.11, Pz = 0.389). No association between the IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk was indicated in Asians, and we found no association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk in Caucasians in any of the genetic models.

Conclusion

The IL1B (-511) polymorphism, but not the IL1B (+3954) and IL1RN (VNTR) polymorphisms was associated with GD risk in Asians. There was no association between these polymorphisms and GD risk in Caucasians.  相似文献   

20.
The budding yeast G-tail binding complex CST (Cdc13-Stn1-Ten1) is crucial for both telomere protection and replication. Previous studies revealed a family of Cdc13 orthologues (Cdc13A) in Candida species that are unusually small but are nevertheless responsible for G-tail binding and the regulation of telomere lengths and structures. Here we report the identification and characterization of a second family of Cdc13-like proteins in the Candida clade, named Cdc13B. Phylogenetic analysis and sequence alignment indicate that Cdc13B probably arose through gene duplication prior to Candida speciation. Like Cdc13A, Cdc13B appears to be essential. Deleting one copy each of the CDC13A and CDC13B genes caused a synergistic effect on aberrant telomere elongation and t-circle accumulation, suggesting that the two paralogues mediate overlapping and nonredundant functions in telomere regulation. Interestingly, Cdc13B utilizes its C-terminal OB-fold domain (OB4) to mediate self-association and binding to Cdc13A. Moreover, the stability of the heterodimer is evidently greater than that of either homodimer. Both the Cdc13 A/A homodimer and A/B heterodimer, but not the B/B homodimer, recognized the telomere G-tail repeat with high affinity and sequence specificity. Our results reveal novel evolutionary elaborations of the G-tail-binding protein in Saccharomycotina yeast, suggesting a drastic remodeling of CDC13 that entails gene duplication, fusion, and functional specialization. The repeated and independent duplication of G-tail-binding proteins such as Cdc13 and Pot1 hints at the evolutionary advantage of having multiple G-tail-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号