首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP (cAMP) inhibited septum formation in Escherichia coli PA3092 and induced cell filamentation at elevated temperatures. This phenomenon was first observed in E. coli PA3092 and is due to a temperature-sensitive mutation. We tentatively named this mutation fic (filamentation induced by cAMP). The fic gene was located near rpsL (formerly strA) on the E. coli K-12 map. the inhibitory effect of cAMP on cell division and filamentation in a fic mutant was not observed in a crp mutant. When cAMP was removed from the culture medium, filaments were divided into rods as the intracellular cAMP level decreased. These results suggest that the cAMP-cAMP receptor protein complex causes filamentation in the fic mutant, E. coli PA3092.  相似文献   

2.
PA3092 is an Escherichia coli mutant that forms filaments at 43 degrees C in the presence of cyclic AMP (cAMP). The mutation responsible for this phenotype is called fic-1. We cloned fic-1 from PA3092 by selection for the neighboring argD gene. The fic-1 gene product had a relative molecular mass of 21 kilodaltons by the maxicell method. A strain with the fic gene completely deleted was constructed by replacing fic with a kanamycin resistance gene. In one of the fic-deleted strains derived from PA3092, cAMP did not induce cell filamentation at 43 degrees C, but it did in the same strain harboring a plasmid containing the fic-1 gene. These results indicate that the fic-1 gene product is necessary for the induction of cell filamentation by cAMP but is dispensable to the cell. We also found that high levels of NaCl suppressed the cell filamentation induced by cAMP.  相似文献   

3.
The nucleotide sequences of fic-1 involved in the cell filamentation induced by cyclic AMP in Escherichia coli and its normal counterpart fic were analyzed. The open reading frame of both fic-1 and fic coded for 200 amino acids. The Gly at position 55 in the Fic protein was changed to Arg in the Fic-1 protein. The promoter activity of fic was confirmed by fusing fic and lacZ. The gene downstream from fic was found to be pabA (p-aminobenzoate). There is an open reading frame (ORF190) coding for 190 amino acids upstream from the fic gene. Computer-assisted analysis showed that Fic has sequence similarity with part of CDC28 of Saccharomyces cerevisiae, CDC2 of Schizosaccharomyces pombe, and FtsA of E. coli. In addition, ORF190 has sequence similarity with the cyclosporin A-binding protein cyclophilin.  相似文献   

4.
The inhibition of cell division induced by bleomycin (BM) and UV irradiation in the set of rec mutants of E. coli K12 was studied. Data presented in this work indicate that BM treatment requires mainly the RecBC pathway for the induction of cell filamentation. In the recB21 mutant cell filamentation is delayed and reduced compared to the wild type. Cell filamentation is BM-induced with similar kinetics in strains with a proficient RecBC recombination pathway (rec+, recF143 and recN262), as well as in the strain with a fully expressed RecF pathway (recB21recC22sbcB15). Induction is completely abolished in the recB21recF143 double mutant. On the other hand cell filamentation was induced similarly by UV irradiation in all strains with a functional recF gene and in the strain with a fully operative RecF pathway, but it was delayed in the recF143 and recB21recF143 mutants.  相似文献   

5.
The role of cyclic AMP (cAMP) in the cell cycle of Escherichia coli K-12 was studied in three mutant strains. One was KI1812, in which the cya promoter is replaced by the lacUV5 promoter. In KI1812, isopropyl-beta-D-thiogalactopyranoside induced the synthesis of cya mRNA, and at the same time cell division was inhibited and short filaments containing multiple nuclei were formed. The other strains were constructed as double mutants (NC6707 cya sulB [ftsZ(Ts)] and TR3318 crp sulB [ftsZ(Ts)]). In both double mutants, filamentation was repressed at 42 degrees C, but it was induced again by addition of cAMP in strain NC6707 and introduction of pHA7 containing wild-type crp in TR3318. These results indicate that lateral wall synthesis in the E. coli cell cycle is triggered by the cAMP-cAMP receptor protein complex.  相似文献   

6.
M C Lorenz  J Heitman 《The EMBO journal》1997,16(23):7008-7018
Pseudohyphal differentiation, a filamentous growth form of the budding yeast Saccharomyces cerevisiae, is induced by nitrogen starvation. The mechanisms by which nitrogen limitation regulates this process are currently unknown. We have found that GPA2, one of the two heterotrimeric G protein alpha subunit homologs in yeast, regulates pseudohyphal differentiation. Deltagpa2/Deltagpa2 mutant strains have a defect in pseudohyphal growth. In contrast, a constitutively active allele of GPA2 stimulates filamentation, even on nitrogen-rich media. Moreover, a dominant negative GPA2 allele inhibits filamentation of wild-type strains. Several findings, including epistasis analysis and reporter gene studies, indicate that GPA2 does not regulate the MAP kinase cascade known to regulate filamentous growth. Previous studies have implicated GPA2 in the control of intracellular cAMP levels; we find that expression of the dominant RAS2(Gly19Val) mutant or exogenous cAMP suppresses the Deltagpa2 pseudohyphal defect. cAMP also stimulates filamentation in strains lacking the cAMP phosphodiesterase PDE2, even in the absence of nitrogen starvation. Our findings suggest that GPA2 is an element of the nitrogen sensing machinery that regulates pseudohyphal differentiation by modulating cAMP levels.  相似文献   

7.
8.
为了研究核转运蛋白SsKapJ在甘蔗鞭孢堆黑粉菌中发挥的作用,本研究利用PEG介导的原生质体转化方法获得基因敲除突变体,并进行了相关生物学表型分析.结果显示潜在核转运蛋白基因SsKapJ△突变体有性配合和菌丝生长显著减弱,转录组分析SsKapJ参与环磷酸腺苷/蛋白激酶A(cAMP/PKA)和丝裂原活化蛋白激酶(MAPK...  相似文献   

9.
In Escherichia coli, expression of the tif-1 mutation (in the recA gene) induces the "SOS response" at 40 degrees C, including massive synthesis of the recA(tif) protein, cell filamentation, appearance of new repair and mutagenic activities, and prophage induction. Expression of the tsl-1 mutation (in the lexA gene) induces massive synthesis of the recA protein and cell filamentation at 42 degrees C, although other SOS functions are not induced. In this paper we show that the septation inhibition induced in tif and tsl strains at 42 degrees C is not due to the presence of a high concentration of recA protein since (i) no recA mutants (相似文献   

10.
Cryptococcus neoformans is a basidiomycete yeast and opportunistic human pathogen of increasing clinical importance due to the increasing population of immunocompromised patients. To further investigate signal transduction cascades regulating fungal pathogenesis, we have identified the gene encoding a RAS homologue in this organism. The RAS1 gene was disrupted by transformation and homologous recombination. The resulting ras1 mutant strain was viable, but failed to grow at 37 degrees C, and exhibited significant defects in mating and agar adherence. The ras1 mutant strain was also avirulent in an animal model of cryptococcal meningitis. Reintroduction of the wild-type RAS1 gene complemented these ras1 mutant phenotypes and restored virulence in animals. A dominantly active RAS1 mutant allele, RAS1Q67L, induced a differentiation phenotype known as haploid fruiting, which involves filamentation, agar invasion and sporulation in response to nitrogen deprivation. The ras1 mutant mating defect was suppressed by overexpression of MAP kinase signalling elements and partially suppressed by exogenous cAMP. Additionally, cAMP also suppressed the agar adherence defect of the ras1 mutant. However, the ability of the ras1 mutant strain to grow at elevated temperature was not restored by cAMP or MAP kinase overexpression. Our findings support a model in which RAS1 signals in C. neoformans through cAMP-dependent, MAP kinase, and RAS-specific signalling cascades to regulate mating and filamentation, as well as growth at high temperature which is necessary for maintenance of infection.  相似文献   

11.
Accumulation of cyclic GMP in filaments of Escherichia coli BUG6   总被引:3,自引:3,他引:0       下载免费PDF全文
Experiments with Escherichia coli BUG6, a temperature-sensitive cell division mutant, have shown that at the restrictive temperature (42 degrees C) the loss of cell division potential (filamentation) was accompanied by an unusual increase in intracellular cyclic GMP (cGMP). At the permissive temperature (30 degrees C), cell division proceeded normally, and cGMP did not accumulate. Increasing the osmotic strength of the medium with NaCl suppressed filamentation in BUG6 at 42 degrees C and also suppressed the temperature-sensitive accumulation of cGMP. The addition of nalidixic acid to BUG6 at 30 degrees C induced filamentation but failed to cause cGMP accumulation. A similar accumulation of cGMP has not been observed in other E. coli strains.  相似文献   

12.
Chronic activation of the angiotensin II (ANG II) type 1 receptor (AT-1R) is critical in the development of chronic kidney disease. ANG II activates mesangial cells (MCs) and stimulates the synthesis of extracellular matrix components. To determine the molecular mechanisms underlying the induction of MC collagen, a mouse mesangial cell line MES-13 was employed. ANG II treatment induced an increase in collagen synthesis, which was abrogated by co-treatment with losartan (an AT-1R antagonist), wortmannin (a phosphoinositide 3-kinase (PI3K) inhibitor), an Akt inhibitor, and stable transfection of dominant negative-Akt1. ANG II induced a significant increase in PI3K activity, which was abolished by co-treatment with losartan or 2',5'-dideoxyadenosine (2',5'-DOA, an adenylyl cyclase inhibitor) but not by PD123319 (an AT-2R antagonist) or H89 (a protein kinase A (PKA) inhibitor). The Epac (exchange protein directly activated by cAMP)-specific cAMP analog, 8-pHPT-2'-O-Me-cAMP, significantly increased PI3K activity, whereas a PKA-specific analog, 6-benzoyladenosine-cAMP, showed no effect. The ANG II-induced increase in PI3K activity was also blocked by co-treatment with PP2, an Src inhibitor, or AG1478, an epidermal growth factor receptor (EGFR) antagonist. ANG II induced phosphorylation of Akt and p70S6K and EGFR, which was abrogated by knockdown of c-Src by small interference RNA. Knockdown of Src also effectively abolished ANG II-induced collagen synthesis. Conversely, stable transfection of a constitutively active Src mutant enhanced basal PI3K activity and collagen production, which was abrogated by AG1478 but not by 2',5'-DOA. Moreover, acute treatment with ANG II significantly increased Src activity, which was abrogated with co-treatment of 2',5'-DOA. Taken together, these results suggest that ANG II induces collagen synthesis in MCs by activating the ANG II/AT-1R-EGFR-PI3K pathway. This transactivation is dependent on cAMP/Epac but not on PKA. Src kinase plays a pivotal role in this signaling pathway between cAMP and EGFR. This is the first demonstration that an AT1R-PI3K/Akt crosstalk, along with transactivation of EGFR, mediates ANG II-induced collagen synthesis in MCs.  相似文献   

13.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

14.
Glucose is a carbon source that is capable of modulating the level of cyclic AMP (cAMP)-regulated genes. In the present study, we found that the stability of ompA mRNA was reduced in Escherichia coli when glucose (40 mM) was present in Luria-Bertani (LB) medium. This effect was associated with a low level of cAMP induced by the glucose. The results were confirmed with an adenylyl cyclase mutant with low levels of cAMP that are not modulated by glucose. Northern blot and Western blot analyses revealed that the host factor I (Hfq) (both mRNA and protein) levels were downregulated in the presence of cAMP. Furthermore, we showed that a complex of cAMP receptor protein (CRP) and cAMP binds to a specific P3(hfq) promoter region of hfq and regulates hfq expression. The regulation of the hfq gene was confirmed in vivo using an hfq-deficient mutant transformed with an exogenous hfq gene containing the promoter. These results demonstrated that expression of hfq was repressed by the CRP-cAMP complex. The presence of glucose resulted in increased Hfq protein levels, which decreased ompA mRNA stability. An additional experiment showed that cAMP also increased the stability of fur mRNA. Taken together, these results suggested that the repression of Hfq by cAMP may contribute to the stability of other mRNA in E. coli.  相似文献   

15.
16.
Adenine requiring mutants of Serratia marcescens SM-6-F'lac+ have been found to grow well in minimal-glucose medium solely supplemented with cAMP. From one of these ade strains double mutants (called ade cpd) were isolated which could no longer utilize cAMP but which still grew on 5'AMP. Dialyzed cell extracts (soluble fraction) of the double mutants, assayed for cAMP phosphodiesterase, were unable to hydrolyze cAMP whereas cell extracts of the parental strains yielded 5'AMP at a rate of 1.6-2.0 mumoles min-1 mg-1 protein. The loss of the phosphodiesterase activity in S. marcescens cpd W 1181 did not cause an accumulation of large amounts of cAMP as was found for the diesterase-negative mutant AB257pc-1 of Escherichia coli. The induced synthesis of beta-galactosidase in mutant cpd W 1181 showed about the same sensitivity to transient and permanent catabolite (glucose) repression as the corresponding cpd+ strain. Starting from S. marcescens cpd W 1182 three independent double mutants (called cpd cya) were isolated which required exogenous cAMP for utilizing various carbohydrates as carbon source, for motility and for the formation of extracellular lipase and the red pigment prodigiosine. The intracellular concentration of cAMP in these mutants, grown in nutrient broth, was 40-60% of that of the parental strain which is about 4 x 10(-4) M. However, the adenylate cyclase in cell extracts of the mutants W 1237 and W 1270 was like that of the corresponding cya+ strain (about 2 x 10(-2) mumoles min-1 mg-1 protein).  相似文献   

17.
Landoulsi A  Kohiyama M 《Biochimie》1999,81(8-9):827-834
The purified DnaA protein has a high affinity for cyclic AMP (cAMP). Using equilibrium dialysis, we determined the K(A) value for cAMP as 0.819 muM(-1). The number of cAMP binding sites per DnaA protein molecule was calculated to be 1.04. This binding was quite specific for cAMP. ATP was also bound by DnaA protein and inhibited cAMP binding. This inhibition was non-competitive in nature with an inhibition constant (K(i)) of about 8.25 muM. However, in vivo we have found not only that the DnaA protein level is reduced in a cyclase deletion mutant strain, Delta++ cya, but also that DnaA protein is not degraded. The Delta cya mutants of E. coli are unable to continue DNA synthesis in the absence of de novo protein synthesis and the initiation of DNA replication in these mutants takes place from oriC.  相似文献   

18.
19.
20.
Binding of cyclic AMP (cAMP) to the cell surface receptor induces a transient activation of guanylate cyclase in Dictyostelium discoideum. A frigid mutant (HC85) which lacks G alpha 2, a guanine nucleotide binding protein, does not respond to cAMP. We found that 2,3-dimercapto-1-propanol (BAL) induced a continuous activation both in the frigid and in its parents. Therefore, the BAL-induced continuous activation of guanylate cyclase is independent of G alpha 2. We also found that cAMP enhanced the BAL-induced continuous activation in the frigid mutant. This result suggests that an unidentified signal transduction mechanism from the cAMP-receptor besides the one involving G alpha 2 plays a role in the enhancement of activation. Lastly, we found that the BAL-induced continuous activation was terminated by cAMP in the parental strain, but not in the frigid mutant. Therefore, the cAMP-induced suppression on the BAL-induced continuous activation is mediated through G alpha 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号