首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chicken erythroblast cell line HD3 is transformed by a temperature-sensitive mutant of avian erythroleukemia virus. Upon shift to the non-permissive temperature in the presence of inducers (hemin and butyric acid), HD3 cells differentiate to an erythrocyte phenotype and provide a model system for analyzing events associated with this process. Expression of some cell surface proteins undergoes drastic changes as cells mature to the erythrocyte stage with a selective loss of membrane proteins that appears to be species-specific. Specific changes also occur in the expression and activities of cytosolic enzymes reflecting alterations of metabolism. HD3 differentiation is characterized by increased transferrin receptor (TFR) expression and increased hemoglobin (Hb) synthesis, a marker for the erythrocyte. In parallel, there is a decrease in glucose transport and an increase in nucleoside transport signifying a switch from glycolytic hexose metabolism to metabolism of pentose from nucleoside. Likewise the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAD) declines while glucose-6-phosphate dehydrogenase (G6PDH) activity remains constant. Commitment to the erythrocyte lineage alters expression of specific genes: TFR mRNA level increases while expression decreases for GLUT1 and GLUT3 glucose transporter mRNAs and GAD mRNA. However, the relationship between GAD activity and GAD mRNA was complex indicating modulation of GAD mRNA and protein half-lives. Serine/threonine and tyrosine phosphorylation and cAMP levels were shown to regulate the level of these messages. In this review, we describe how HD3 differentiation involves changes in plasma membrane composition, metabolism and gene expression that are orchestrated at different levels of control by multiple signaling modalities.  相似文献   

2.
The chicken erythroblast cell line, HD3, has high glucose transport activity which is lost upon differentiation to the red cell phenotype. HD3 cells, when incubated under conditions where maturation occurs, show substantial loss of GLUT1 and GLUT3 mRNAs. To assess whether cAMP or cellular protein phosphorylation affected GLUT mRNA and protein, the HD3 cells were incubated in the presence of different phosphatase inhibitors. Treatment of HD3 cells with the phosphatase inhibitors okadaic acid, vanadate or with 3-isobutyl-1-methyl-xanthine induced glucose transport and GLUT mRNAs. This suggests that phosphorylation events enhance glucose transport and that their reduction may be involved in the decrease in glucose transport that occurs upon HD3 cells differentiation.  相似文献   

3.
Sea urchin embryo micromeres when isolated and cultured in vitro differentiate to produce spicules. Although several authors have used this model, almost nothing is known about the signaling pathways responsible for initiating skeletogenesis. In order to investigate the potential involvement of phosphorylation events in spiculogenesis, the effect of inhibitors of protein kinases and phosphatases on skeleton formation was studied. Results obtained using both cultured micromeres and embryos revealed that protein tyrosine kinase and phosphatase inhibitors blocked skeleton formation, but not serine/threonine phosphatase inhibitors. The inhibitors showed a dose-dependent effect and when removed from micromere or embryo culture, spicule formation resumed. Inhibition of tyrosine phosphatases resulted in an increase in the tyrosine phosphorylation level of two major proteins and a modest decrease in the expression of the mRNA coding for type I fibrillar collagen. These findings strongly suggest that tyrosine phosphorylation and dephosphorylation is required for micromere differentiation and for normal skeletogenesis during sea urchin embryo development.  相似文献   

4.
5.
In vitro erythroid differentiation of mouse erythroleukemia (MEL) cells was induced by combinations of topoisomerase and protein kinase inhibitors. Neither inhibitor alone exhibited inducing activity. Although inhibitors of topoisomerases I and II were equally effective in the synergistic induction of erythroid differentiation, only inhibitors of tyrosine kinases, not of serine/threonine kinases, exhibited synergistic activity. The erythroid differentiation induced by the combination of topoisomerase and protein tyrosine kinase inhibitors was distinguished from that induced by typical erythroid inducing agents such as DMSO or HMBA by (1) earlier hemoglobin accumulation in the cells and (2) insensitivity to specific inhibitors (dexamethasone and sodium orthovanadate) of MEL cell differentiation.  相似文献   

6.
The influence of protein phosphorylation on the kinetics of cytochrome c oxidase was investigated by applying Western blotting, mass spectrometry, and kinetic measurements with an oxygen electrode. The isolated enzyme from bovine heart exhibited serine, threonine, and/or tyrosine phosphorylation in various subunits, except subunit I, by using phosphoamino acid-specific antibodies. The kinetics revealed slight inhibition of oxygen uptake in the presence of ATP, as compared with the presence of ADP. Mass spectrometry identified the phosphorylation of Ser-34 at subunit IV and Ser-4 and Thr-35 at subunit Va. Incubation of the isolated enzyme with protein kinase A, cAMP, and ATP resulted in serine and threonine phosphorylation of subunit I, which was correlated with sigmoidal inhibition kinetics in the presence of ATP. This allosteric ATP-inhibition of cytochrome c oxidase was also found in rat heart mitochondria, which had been rapidly prepared in the presence of protein phosphatase inhibitors. The isolated rat heart enzyme, prepared from the mitochondria by blue native gel electrophoresis, showed serine, threonine, and tyrosine phosphorylation of subunit I. It is concluded that the allosteric ATP-inhibition of cytochrome c oxidase, previously suggested to keep the mitochondrial membrane potential and thus the reactive oxygen species production in cells at low levels, occurs in living cells and is based on phosphorylation of cytochrome c oxidase subunit I.  相似文献   

7.
8.
After treatment of HD3 cells with erythroid-inducing agents (hemin and butyric acid) at 42°C, the profile of phosphotyrosine-containing proteins was altered. Upon induction the overall level of phosphotyrosine-containing proteins increased. To examine the role of protein phosphorylation in HD3 cells differentiation, the cells were treated with specific inhibitors. In the presence of okadaic acid, cell proliferation was arrested and accompanied by a marked increase in haemoglobin synthesis, a differentiation marker of erythroid cells. Okadaic acid caused decrease of the phosphotyrosine-containing proteins, presumably to maintain a balance between phosphorylation/dephosphorylation processes in the cells. Addition of 3-isobutyl-l-methyl-xanthine, an activator of phosphatases, caused a decrease or disappearance of almost all phosphotyrosine-containing proteins and, at the same time, prevented the erythroid differentiation of HD3 cells. Sodium orthovanadate, a specific inhibitor of phosphotyrosine phosphatase, increased the level of phosphotyrosine proteins and induced differentiation of HD3 cells. These results indicate that phosphorylation of cellular proteins is coupled with a reaction(s) which is responsible for triggering the differentiation of HD3 cells. The phosphorylation/dephosphorylation processes are associated with an early event(s) during the differentiation of HD3 cells and may not be connected to tyrosine residues. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Some data in the literature suggest that serine/threonine phosphorylation is required for activation of the mixed-lineage kinases (MLKs), a subgroup of mitogen-activated protein kinase kinase kinases (MAPKKKs). In this report, we demonstrate that the MLK family member DLK is activated and concurrently tyrosine-phosphorylated in cells exposed to the protein tyrosine phosphatase inhibitor vanadate. Tyrosine phosphorylation appears crucial for activation as incubation of vanadate-activated DLK molecules with a tyrosine phosphatase substantially reduced DLK enzymatic activity. Interestingly, the effects of vanadate on DLK are completely blocked by treatment with a Src family kinase inhibitor, PP2, or the expression of short hairpin RNA (shRNA) directed against Src. DLK also fails to undergo vanadate-stimulated tyrosine phosphorylation and activation in fibroblasts which lack expression of Src, Yes and Fyn, but reintroduction of wild-type Src or Fyn followed by vanadate treatment restores this response. In addition to vanadate, stimulation of cells with platelet-derived growth factor (PDGF) also induces tyrosine phosphorylation and activation of DLK by a Src-dependent mechanism. DLK seems important for PDGF signaling because its depletion by RNA interference substantially reduces PDGF-stimulated ERK and Akt kinase activation. Thus, our findings suggest that Src-dependent tyrosine phosphorylation of DLK may be important for regulation of its activity, and they support a role for DLK in PDGF signaling.  相似文献   

10.
Li F  Wang D  Zhou Y  Zhou B  Yang Y  Chen H  Song J 《Cell research》2008,18(2):311-323
cAMP and protein kinase A (PKA) are widely known as signaling molecules that are important for the induction of adipogenesis. Here we show that a strong increase in the amount of cAMP inhibits the adipogenesis of 3T3-L1 fibroblast cells. Stimulation of PKA activity suppresses adipogenesis and, in contrast, inhibition of PKA activity markedly accelerates the adipogenic process. As adipogenesis progresses, there is a significant increase in the expression level of PKA regulatory and a corresponding decrease in PKA activity. Moreover, treatment of 3T3-L1 cells with epidermal growth factor (EGF) stimulates PKA activity and blocks adipogenesis. Inhibition of PKA activity abolishes this suppressive effect of EGF on adipogenesis. Moreover, asubunits ctivation of PKA induces serine/threonine phosphorylation, reduces tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) and the association between PKA and IRS-1. Taken together, our study demonstrates that PKA has a pivotal role in the suppression of adipogenesis, cAMP at high concentrations can suppress adipogenesis through PKA activation. These findings could be important and useful for understanding the mechanisms of adipogenesis and the relevant physiological events.  相似文献   

11.
Glial fibrillary acidic protein (GFAP) is expressed upon cAMP-mediated induction of differentiation of glial progenitor cells into type II astrocytes. The protein is regulated by hormones, growth factors and cytokines but the signal transduction pathways involved in the regulation of GFAP expression are largely unknown. Specific protein kinase inhibitors were used to study their effect on the expression of GFAP in rat C6 glioma cells. Herbimycin A, a selective protein tyrosine kinase inhibitor, reduced GFAP mRNA and protein expression upon cAMP analog or beta-adrenergic receptor-mediated induction of differentiation. The latter inhibitor attenuated the elevation of cAMP by adenylate cyclase and abolished the activity of phosphatidylinositol 3-kinase (PI 3-K). These data indicate that GFAP expression is regulated by protein tyrosine phosphorylations, modulating the cAMP concentration and PI 3-K activity in C6 glioma cells.  相似文献   

12.
Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants.  相似文献   

13.
14.
The effect of 8-bromo-cAMP and forskolin on the phosphorylation state and protein kinase activity of the insulin receptor was evaluated in cultured IM-9 lymphoblasts. 8-Bromo-cAMP (1 mM) or forskolin (10 microM) enhanced the phosphorylation of the insulin receptor purified from 32P-labeled cells by affinity chromatography on wheat germ agglutinin-agarose and immunoprecipitation with monoclonal antibody. In the absence of insulin, phosphorylation of the beta subunit of the receptor was increased approximately 2-fold by raising intracellular cAMP. Phosphoamino acid analysis of the beta subunit following treatment of cells with forskolin revealed an increase in phosphoserine and phosphothreonine residues. In contrast, the insulin-stimulated phosphorylation of the receptor occurred on serine, threonine, and tyrosine residues and was diminished by prior exposure of cells to forskolin. Pulse-chase experiments indicated that forskolin did not enhance the turnover of phosphate on the receptor of cells previously exposed to insulin. Furthermore, extracts from forskolin-treated cells did not differ from control extracts in their capacity to dephosphorylate 32P-labeled receptor isolated from cells treated with insulin. The insulin-dependent tyrosine protein kinase activity of the receptor isolated from forskolin-treated cells was approximately 50% as active as the receptor isolated from either control or insulin-treated cells. This was assessed using both histone and a peptide synthesized in accordance with the deduced amino acid sequence of a potential autophosphorylation site of the human receptor (Thr-Arg-Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg-Lys) as substrates for the protein kinase reaction. These results suggest that agents that raise intracellular cAMP increase phosphorylation of the insulin receptor on serine and threonine residues, reduce insulin-mediated receptor phosphorylation on tyrosine, serine, and threonine residues, and inhibit the insulin-dependent tyrosine protein kinase activity of the receptor. Thus cAMP may attenuate insulin action by altering the state of phosphorylation of the insulin receptor.  相似文献   

15.
The extracellular signal-regulated kinase (ERK) 1 and 2 proteins are mitogen-activated protein kinase (MAPK) members that regulate cell proliferation and differentiation. ERK proteins are activated exclusively by MAPK kinase 1 and 2 phosphorylation of threonine and tyrosine residues located within the conserved TXY MAPK activation motif. Although dual phosphorylation of Thr and Tyr residues confers full activation of ERK, in vitro studies suggest that a single phosphorylation on either Thr or Tyr may yield partial ERK activity. Previously, we have demonstrated that phosphorylation of the tyrosine residue (Tyr(P) ERK) may be involved in regulating the Golgi complex structure during the G2 and M phases of the cell cycle (Cha, H., and Shapiro, P. (2001) J. Cell Biol. 153, 1355-1368). In the present study, we examined mechanisms for generating Tyr(P) ERK by determining cell cycle-dependent changes in localized phosphatase activity. Using fractionated nuclei-free cell lysates, we find increased serine/threonine phosphatase activity associated with Golgi-enriched membranes in cells synchronized in the late G2/early M phase as compared with G1 phase cells. The addition of phosphatase inhibitors in combination with immunodepletion assays identified this activity to be related to protein phosphatase 2A (PP2A). The increased activity was accounted for by elevated PP2A association with mitotic Golgi membranes as well as increased catalytic activity after normalization of PP2A protein levels in the phosphatase assays. These data indicate that localized changes in PP2A activity may be involved in regulating proteins involved in Golgi disassembly as cells enter mitosis.  相似文献   

16.
Abstract Porphyromonas gingivalis 381 fimbriae and a synthetic peptide composed of residues 69–73 (ALTTE) of the fimbrial subunit protein, FP381(69–73), function in the induction of interleukin 6 (IL-6) production, IL-6 mRNA expression, and tyrosine and serine/threonine phosphorylation of several proteins in human peripheral blood mononuclear cells (PBMC). Herbimycin A and H-7, inhibitors of tyrosine kinases and protein kinase C (PKC), markedly inhibited IL-6 production, gene expression, and tyrosine and serine/threonine phosphorylation of proteins. An inactive analog of synthetic peptide replaced alanine to glycine at position 69 in FP381(69–73), GLTTE, exhibited an antagonistic effect on the IL-6 production induced by the fimbriae. These results suggest that the peptide ALTTE functions as an agent in inflammatory reactions and immune responses in the inflamed gingival and periodontal tissues, in which the participation of protein phosphorylation by tyrosine kinases and PKC in signal transduction may be considered.  相似文献   

17.
The growth hormone receptor (GHR), a cytokine receptor superfamily member, requires the JAK2 tyrosine kinase for signaling. We now examine functional interactions between growth hormone (GH) and epidermal growth factor (EGF) in 3T3-F442A fibroblasts. Although EGF enhanced ErbB-2 tyrosine phosphorylation, GH, while causing retardation of its migration on SDS-polyacrylamide gel electrophoresis, decreased ErbB-2's tyrosine phosphorylation. GH-induced retardation was reversed by treatment of anti-ErbB-2 precipitates with both alkaline phosphatase and protein phosphatase 2A, suggesting that GH induced serine/threonine phosphorylation of ErbB-2. Both GH-induced shift in ErbB-2 migration and GH-induced MAP kinase activation were unaffected by a protein kinase C inhibitor but were blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK1) inhibitor, PD98059. Notably, leukemia inhibitory factor, but not interferon-gamma, also promoted ErbB-2 shift and mitogen-activated protein kinase activation. Cotreatment with EGF and GH versus EGF alone resulted in a 35% decline in acute ErbB-2 tyrosine 1248 autophosphorylation, a marked decline (approximately 50%) in DNA synthesis, and substantially decreased cyclin D1 expression. We conclude that in 3T3-F442A cells, 1) the GH-induced decrease in ErbB-2 tyrosine phosphorylation correlates with MEK1/mitogen-activated protein kinase activity and 2) GH antagonizes EGF-induced DNA synthesis and cyclin D1 expression in a pattern consistent with its alteration in ErbB-2 phosphorylation status.  相似文献   

18.
The levels of Pim-1, a serine/threonine kinase, increase during phorbol myristate acetate (PMA)-induced myeloid cell differentiation. The tyrosine phosphatase PTP-U2S is also associated with PMA-induced differentiation of myeloid cells and has been shown to enhance differentiation and the onset of apoptosis. PTP-U2S contains a Pim-1 phosphorylation consensus sequence, KKRKLTN, which is efficiently phosphorylated by Pim-1. Immunoprecipitated PTP-U2S from U937 cells was phosphorylated by recombinant Pim-1, resulting in a decrease in its phosphatase activity. During PMA-induced differentiation, U937 cells transfected with the dominant negative Pim-1 underwent rapid differentiation and accelerated apoptosis. The opposite effect was observed for wild-type Pim-1. Our results, therefore, provide compelling evidence that Pim-1 functions to negatively regulate PMA-induced differentiation in part through the phosphorylation of PTP-U2S. Together these data suggest that Pim-1 phosphorylates PTP-U2S in vivo to decrease the phosphatase activity that may be necessary to prevent the premature onset of apoptosis following differentiation.  相似文献   

19.
In vivo effect of sodium orthovanadate on pp60c-src kinase.   总被引:7,自引:4,他引:3  
We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.  相似文献   

20.
Human and experimental heart failure is characterized by increases in type-1 protein phosphatase activity, which may be partially attributed to inactivation of its endogenous regulator, protein phosphatase inhibitor-1. Inhibitor-1 represents a nodal integrator of two major second messenger pathways, adenosine 3',5'-cyclic monophosphate (cAMP) and calcium, which mediate its phosphorylation at threonine 35 and serine 67, respectively. Here, using recombinant inhibitor-1 wild-type and mutated proteins, we identified a novel phosphorylation site in inhibitor-1, threonine 75. This phosphoamino acid was phosphorylated in vitro by protein kinase Calpha independently and to the same extent as serine 67, the previous protein kinase Calpha-identified site. Generation of specific antibodies for the phosphorylated and dephosphorylated threonine 75 revealed that this site is phosphorylated in rat and dog hearts. Adenoviral-mediated expression of the constitutively phosphorylated threonine 75 inhibitor-1 in isolated myocytes was associated with specific stimulation of type-1 protein phosphatase activity and marked inhibition of the sarcoplasmic calcium pump affinity for calcium, resulting in depressed contractility. Thus, phosphorylation of inhibitor-1 at threonine 75 represents a new mechanism of cardiac contractility regulation, partially through the alteration of sarcoplasmic reticulum calcium transport activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号