首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Circadian rhythms are endogenous oscillations that occur with a period close to 24 h in nearly all living organisms. These rhythms originate from the negative autoregulation of gene expression. Deterministic models based on such genetic regulatory processes account for the occurrence of circadian rhythms in constant environmental conditions (e.g., constant darkness), for entrainment of these rhythms by light-dark cycles, and for their phase-shifting by light pulses. When the numbers of protein and mRNA molecules involved in the oscillations are small, as may occur in cellular conditions, it becomes necessary to resort to stochastic simulations to assess the influence of molecular noise on circadian oscillations. We address the effect of molecular noise by considering the stochastic version of a deterministic model previously proposed for circadian oscillations of the PER and TIM proteins and their mRNAs in Drosophila. The model is based on repression of the per and tim genes by a complex between the PER and TIM proteins. Numerical simulations of the stochastic version of the model are performed by means of the Gillespie method. The predictions of the stochastic approach compare well with those of the deterministic model with respect both to sustained oscillations of the limit cycle type and to the influence of the proximity from a bifurcation point beyond which the system evolves to stable steady state. Stochastic simulations indicate that robust circadian oscillations can emerge at the cellular level even when the maximum numbers of mRNA and protein molecules involved in the oscillations are of the order of only a few tens or hundreds. The stochastic model also reproduces the evolution to a strange attractor in conditions where the deterministic PER-TIM model admits chaotic behaviour. The difference between periodic oscillations of the limit cycle type and aperiodic oscillations (i.e. chaos) persists in the presence of molecular noise, as shown by means of Poincaré sections. The progressive obliteration of periodicity observed as the number of molecules decreases can thus be distinguished from the aperiodicity originating from chaotic dynamics. As long as the numbers of molecules involved in the oscillations remain sufficiently large (of the order of a few tens or hundreds, or more), stochastic models therefore provide good agreement with the predictions of the deterministic model for circadian rhythms.  相似文献   

2.
3.
4.
5.
Gérard C  Gonze D  Goldbeter A 《The FEBS journal》2012,279(18):3411-3431
The transitions between the G(1) , S, G(2) and M phases of the mammalian cell cycle are driven by a network of cyclin-dependent kinases (Cdks), whose sequential activation is regulated by intertwined negative and positive feedback loops. We previously proposed a detailed computational model for the Cdk network, and showed that this network is capable of temporal self-organization in the form of sustained oscillations, which govern ordered progression through the successive phases of the cell cycle [Gérard and Goldbeter (2009) Proc Natl Acad Sci USA106, 21643-21648]. We subsequently proposed a skeleton model for the cell cycle that retains the core regulatory mechanisms of the detailed model [Gérard and Goldbeter (2011) Interface Focus1, 24-35]. Here we extend this skeleton model by incorporating Cdk regulation through phosphorylation/dephosphorylation and by including the positive feedback loops that underlie the dynamics of the G(1) /S and G(2) /M transitions via phosphatase Cdc25 and via phosphatase Cdc25 and kinase Wee1, respectively. We determine the effects of these positive feedback loops and ultrasensitivity in phosphorylation/dephosphorylation on the dynamics of the Cdk network. The multiplicity of positive feedback loops as well as the existence of ultrasensitivity promote the occurrence of bistability and increase the amplitude of the oscillations in the various cyclin/Cdk complexes. By resorting to stochastic simulations, we further show that the presence of multiple, redundant positive feedback loops in the G(2) /M transition of the cell cycle markedly enhances the robustness of the Cdk oscillations with respect to molecular noise.  相似文献   

6.
The stochastic dynamics of T cell receptor (TCR) signaling are studied using a mathematical model intended to capture kinetic proofreading (sensitivity to ligand-receptor binding kinetics) and negative and positive feedback regulation mediated, respectively, by the phosphatase SHP1 and the MAP kinase ERK. The model incorporates protein-protein interactions involved in initiating TCR-mediated cellular responses and reproduces several experimental observations about the behavior of TCR signaling, including robust responses to as few as a handful of ligands (agonist peptide-MHC complexes on an antigen-presenting cell), distinct responses to ligands that bind TCR with different lifetimes, and antagonism. Analysis of the model indicates that TCR signaling dynamics are marked by significant stochastic fluctuations and bistability, which is caused by the competition between the positive and negative feedbacks. Stochastic fluctuations are such that single-cell trajectories differ qualitatively from the trajectory predicted in the deterministic approximation of the dynamics. Because of bistability, the average of single-cell trajectories differs markedly from the deterministic trajectory. Bistability combined with stochastic fluctuations allows for switch-like responses to signals, which may aid T cells in making committed cell-fate decisions.  相似文献   

7.
8.
9.
10.
An internal noise-driven oscillator was studied in a two-variable Drosophila model, where both positive feedback and negative feedback are crucial to the circadian oscillations. It is shown that internal noise could sustain reliable oscillations for the parameter which produces a stable steady state in the deterministic system. The noise-sustained oscillations are interpreted by using phase plane analysis. The period of such oscillations fluctuates slightly around the period of deterministic oscillations and the coherence of oscillations becomes the best at an optimal internal noise intensity, indicating the occurrence of intrinsic coherence resonance. In addition, in the oscillatory region, the coherence of noisy circadian oscillations is suppressed by the internal noise, but the period is hardly affected, demonstrating the robustness of the Drosophila model for circadian rhythms to the intrinsic noise.  相似文献   

11.
Circadian rhythms which occur with a period close to 24 h in nearly all living organisms originate from the negative autoregulation of gene expression.Deterministic models based on genetic regulatory processes account for theoccurrence of circadian rhythms in constant environmental conditions (e.g.constant darkness), for entrainment of these rhythms by light-dark cycles, and for their phase-shifting by light pulses. At low numbers of protein and mRNA molecules, it becomes necessary to resort to stochastic simulations to assess the influence of molecular noise on circadian oscillations. We address the effect of molecular noise by considering two stochastic versions of a core model for circadian rhythms. The deterministic version of this core modelwas previously proposed for circadian oscillations of the PER protein in Drosophila and of the FRQ protein in Neurospora. In the first, non-developed version of the stochastic model, we introduce molecular noise without decomposing the deterministic mechanism into detailed reaction steps while in the second, developed version we carry out such a detailed decomposition. Numerical simulations of the two stochastic versions of the model are performed by means of the Gillespie method. We compare the predictions of the deterministic approach with those of the two stochastic models, with respect both to sustained oscillations of the limit cycle type and to the influence of the proximity of a bifurcation point beyond which the system evolves to a stable steady state. The results indicate that robust circadian oscillations can occur even when the numbers of mRNA and nuclear protein involved in the oscillatory mechanism are reduced to a few tens orhundreds, respectively. The non-developed and developed versions of the stochastic model yield largely similar results and provide good agreement with the predictions of the deterministic model for circadian rhythms.  相似文献   

12.
It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.  相似文献   

13.
ABSTRACT: BACKGROUND: Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs. RESULTS: We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case. CONCLUSION: The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and robustness of the oscillations in presence or absence of nuclear compartmentalization were differentially determined by two designs of coupled positive and negative feedback loops. A positive feedback from an oscillating MAPK cascade was shown to induce oscillations in an external signal processing module, uncovering a novel regulatory aspect of MAPK signal processing.  相似文献   

14.
Switches (bistability) and oscillations (limit cycle) are omnipresent in biological networks. Synthetic genetic networks producing bistability and oscillations have been designed and constructed experimentally. However, in real biological systems, regulatory circuits are usually interconnected and the dynamics of those complex networks is often richer than the dynamics of simple modules. Here we couple the genetic Toggle switch and the Repressilator, two prototypic systems exhibiting bistability and oscillations, respectively. We study two types of coupling. In the first type, the bistable switch is under the control of the oscillator. Numerical simulation of this system allows us to determine the conditions under which a periodic switch between the two stable steady states of the Toggle switch occurs. In addition we show how birhythmicity characterized by the coexistence of two stable small-amplitude limit cycles, can easily be obtained in the system. In the second type of coupling, the oscillator is placed under the control of the Toggleswitch. Numerical simulation of this system shows that this construction could for example be exploited to generate a permanent transition from a stable steady state to self-sustained oscillations (and vice versa) after a transient external perturbation. Those results thus describe qualitative dynamical behaviors that can be generated through the coupling of two simple network modules. These results differ from the dynamical properties resulting from interlocked feedback loops systems in which a given variable is involved at the same time in both positive and negative feedbacks. Finally the models described here may be of interest in synthetic biology, as they give hints on how the coupling should be designed to get the required properties.  相似文献   

15.
The jasmonate (JA) signaling pathway in plants is activated as defense response to a number of stresses like attacks by pests or pathogens and wounding by animals. Some recent experiments provide significant new knowledge on the molecular detail and connectivity of the pathway. The pathway has two major components in the form of feedback loops, one negative and the other positive. We construct a minimal mathematical model, incorporating the feedback loops, to study the dynamics of the JA signaling pathway. The model exhibits transient gene expression activity in the form of JA pulses in agreement with experimental observations. The dependence of the pulse amplitude, duration and peak time on the key parameters of the model is determined computationally. The deterministic and stochastic aspects of the pathway dynamics are investigated using both the full mathematical model and a reduced version of it. We also compare the mechanism of pulse formation with the known mechanisms of pulse generation in some bacterial and viral systems.  相似文献   

16.
Oscillatory behaviours in genetic networks are important examples for studying the principles underlying the dynamics of cellular regulation. Recently the team of Alon has reported a surprisingly rich oscillatory response of the p53 tumor suppressor to irradiation stress et al. [Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., Alon, U., 2004. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36 (2), 147-150; Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U., 2006. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2, 2006.0033]. Several models for this system have been proposed by different groups, based essentially on negative feedback loops. In this paper we investigate in detail oscillations and stability in a deterministic time delayed differential model of the core circuit for p53 expression. This model is representative of a class of modelling approaches of this system, based on a "minimal" set of well-established biomolecular regulations. Depending on the protein degradation rates we show the existence of bifurcations between a stable steady state and oscillations both in presence and absence of stress.  相似文献   

17.
18.
MOTIVATION: Mathematical models of the cell cycle can contribute to an understanding of its basic mechanisms. Modern simulation tools make the analysis of key components and their interactions very effective. This paper focuses on the role of small modules and feedbacks in the gene-protein network governing the G1/S transition in mammalian cells. Mutations in this network may lead to uncontrolled cell proliferation. Bifurcation analysis helps to identify the key components of this extremely complex interaction network. RESULTS: We identify various positive and negative feedback loops in the network controlling the G1/S transition. It is shown that the positive feedback regulation of E2F1 and a double activator-inhibitor module can lead to bistability. Extensions of the core module preserve the essential features such as bistability. The complete model exhibits a transcritical bifurcation in addition to bistability. We relate these bifurcations to the cell cycle checkpoint and the G1/S phase transition point. Thus, core modules can explain major features of the complex G1/S network and have a robust decision taking function.  相似文献   

19.
Li Q  Lang X 《Biophysical journal》2008,94(6):1983-1994
Circadian rhythmic processes, mainly regulated by gene expression at the molecular level, have inherent stochasticity. Their robustness or resistance to internal noise has been extensively investigated by most of the previous studies. This work focuses on the constructive roles of internal noise in a reduced Drosophila model, which incorporates negative and positive feedback loops, each with a time delay. It is shown that internal noise sustains reliable oscillations with periods close to 24 h in a region of parameter space, where the deterministic kinetics would evolve to a stable steady state. The amplitudes of noise-sustained oscillations are significantly affected by the variation of internal noise level, and the best performance of the oscillations could be found at an optimal noise intensity, indicating the occurrence of intrinsic coherence resonance. In the oscillatory region of the deterministic model, the coherence of noisy circadian oscillations is suppressed by internal noise, while the period remains nearly constant over a large range of noise intensity, demonstrating robustness of the Drosophila model for circadian rhythms to intrinsic noise. In addition, the effects of time delay in the positive feedback on the oscillations are also investigated. It is found that the time delay could efficiently tune the performance of the noise-sustained oscillations. These results might aid understanding of the exploitation of intracellular noise in biochemical and genetic regulatory systems.  相似文献   

20.
The regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transport. We determined that positive feedback is generated by PHO pathway-dependent upregulation of Spl2, a negative regulator of low-affinity phosphate uptake. The interplay of positive and negative feedback loops leads to bistability in phosphate transporter usage--individual cells express predominantly either low- or high-affinity transporters, both of which can yield similar phosphate uptake capacity. Cells lacking the high-affinity transporter, and associated negative feedback, exhibit phenotypes that arise from hysteresis due to unopposed positive feedback. In wild-type cells, population heterogeneity generated by feedback loops may provide a strategy for anticipating changes in environmental phosphate levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号