首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat (Triticum aestivum L.), a staple food crop, is of great commercial importance. Its production is restricted due to multiple environmental stresses. There are indications that the wheat production is consistently limited by terminal heat stress. Previous studies revealed a varied response of different wheat genotypes under heat stress conditions. Here, comparative physiological changes in wheat genotypes viz., DBW-140, Raj-3765, PBW-574, K-0-307 and HS-240 were evaluated under timely and late sown conditions in rabi season. We observed that heat stress dramatically affects chlorophyll content and leaf area index (LAI) in sensitive genotypes whereas proline and malondialdehyde (MDA) content were higher in tolerant genotypes under late sown conditions. Further, the heat susceptibility index (HIS) for 1,000-grain weight, grain weight and grain yield of wheat genotypes viz., HS 240 and K-0-307 was highest as compared with DBW 140, Raj 3765 and PBW 574 genotypes. This finding suggests that wheat genotypes are found to differ in their ability to respond to heat, thereby tolerance, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.  相似文献   

2.
Nineteen wheat genotypes were used to examine the effects of foliar applied glycine betaine (GB, 100 mM) on concentration of various osmolytes (such as proline, choline, GB and sucrose) under drought stress conditions. Drought stress caused a significant increase in proline content and GB content of wheat genotypes, both at maximum tillering and anthesis stages. Choline and sucrose were accumulated significantly at higher levels under stress conditions at both the stages. GB application increased the proline content and endogenous levels of GB in comparison to their stressed counterparts both at maximum tillering and anthesis stages but this increase was observed to be genotype specific. Furthermore, significant decrease in choline levels and sucrose contents of GB treated plants at anthesis stage and enhanced levels of proline questioned about involvement of GB in production of other osmolytes as well as stage specific response of wheat genotypes to GB spray. But these changes in osmolyte accumulation (OA) were not correlated with relative water content and stress tolerance index observed, under both GB sprayed and non-sprayed drought stressed conditions. So OA could not be considered as a selection criteria for drought tolerance in wheat.  相似文献   

3.
An experiment was conducted to find out the efficacy of putrescine and benzyladenine on photosynthesis and productivity in wheat. Seeds of wheat genotype HD 2329 (widely adapted under irrigated condition) were grown in ceramic pots under standard package and practices. Putrescine (0.1 mM) and benzyladenine (0.05 mM) were sprayed on the aerial portion of these plants at the time of anthesis. After spray, half of the plants were subjected to water stress by withholding irrigation. The non stressed plants were irrigated to keep the soil humidity at field capacity. Results showed that drought stress severly reduced the photosynthetic attributes, water status and chlorophyll content which were significantly improved by foliar application of putrescine/benzyladenine. The levels of free proline, amino acids and soluble sugars were higher under water stress conditions which were enhanced further by putrescine/benzyladenine. Memrane injury was also reduced by both the chemicals. Yield and yield attributes reduced under water stress conditions, but putrescine and benzyladenine treated plants exhibited significantly higher values over control. Most of these parameters were found significantly correlated with grain yield. It is suggested that both benyzladenine and putrescine were able to impart drought tolerance in wheat but the response of putrescine was more promising owing to better management of various physio-biochemical processes, particularly under water stress conditions.  相似文献   

4.
High temperature is a common constraint during anthesis and grain-filling stages of wheat leading to huge losses in yield. In order to understand the mechanism of heat tolerance during monocarpic senescence, the present study was carried out under field conditions by allowing two well characterized Triticum aestivum L. cultivars differing in heat tolerance, Hindi62 (heat-tolerant) and PBW343 (heat-susceptible), to suffer maximum heat stress under late sown conditions. Senescence was characterized by measuring photosynthesis related processes and endoproteolytic activity during non-stress environment (NSE) as well as heat-stress environment (HSE). There was a faster rate of senescence under HSE in both the genotypes. Hindi62, having pale yellow flag leaf with larger area, maintained cooler canopy under high temperatures than PBW343. The tolerance for high temperature in Hindi62 was clearly evident in terms of slower green-leaf area degradation, higher stomatal conductance, higher stability in maximum PSII efficiency, Rubisco activity and Rubisco content than PBW343. Both the genotypes exhibited lower endopeptidase activity under HSE as compared to NSE and this difference was more apparent in Hindi62. Serine proteases are the predominant proteases responsible for protein degradation under NSE as well as HSE. Flag leaf of both the genotypes exhibited high-molecular-mass endoproteases (78 kDa and 67 kDa) isoforms up to full grain maturity which were inhibited by specific serine protease inhibitor in both the environments. In conclusion, the heat-tolerant Hindi62 exhibited a slower rate of senescence than the heat-susceptible PBW343 during HSE, which may contribute towards heat stability.  相似文献   

5.
Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress   总被引:12,自引:0,他引:12  
The role of plant antioxidant systems in stress tolerance was studied in leaves of three contrasting wheat genotypes. Drought imposed at two different stages after anthesis resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbic acid content. Antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and catalase significantly increased under water stress. Drought tolerant genotype C 306 which had highest ascorbate peroxidase and catalase activity and ascorbic acid content also showed lowest H2O2 accumulation and lipid peroxidation (malondialdehyde content) under water stress in comparison to susceptible genotype HD 2329 which showed lowest antioxidant enzyme activity and ascorbic acid content and highest H2O2 content and lipid peroxidation. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Superoxide dismutase activity, however, did not show significant differences among the genotypes under irrigated as well as water stress condition. It seems that H2O2 scavenging systems as represented by ascorbate peroxidase and catalase are more important in imparting tolerance against drought induced oxidative stress than superoxide dismutase alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.

Since global warming affects wheat cropping systems, more has yet to be indicated on the parameters, which control terminal heat tolerance, and severely influence wheat (Triticum aestivum L.) productivity. Identification of tolerant wheat genotypes by heat tolerance-linked molecular markers is a rapid and cost-effective screening tool in plant breeding. Accordingly, in a four-year field experiment (2015–2019), 44 wheat genotypes were selected out of 100 genotypes, and were examined in timely and late planting (mid-January resulting in heat stress). Stress decreased yield components, including 1000-kernel weight (TKW), grains per spike, and plants per square meter, and the physiological traits, including days to heading and days to maturity, grain filling duration, and greenness, and eventually decreased grain yield up to?~?28%. The early maturity genotypes resulted in higher yields under stress conditions by a stress-avoidance mechanism. Among 14 SSR markers, GWM577 was positively correlated with yield, and WMS3062, GWM261, and WMS1025 had positive correlations with longevity under stress. Accordingly, WMS3062 and GWM261 can be used to determine high yield and early maturity genotypes. Furthermore, GWM114 showed a positive correlation with TKW, indicating their usefulness for grouping wheat genotypes and for identifying heat-related markers. Since the crossing of the genetically distant genotypes can create more diverse populations, the results could be applied to plan breeding projects to establish more diverse populations for different chromosomal locations and traits under heat stress conditions. Moreover, our findings demonstrated that the morphological and molecular analyses could be useful for describing wheat genetic variation of heat tolerance.

  相似文献   

7.
The role of plant antioxidant system in water stress tolerance was studied in three contrasting wheat genotypes. Water stress imposed at different stages after anthesis resulted in a general increase in lipid peroxidation (LPO) and decrease in membrane stability index (MSI), and contents of chlorophylls (Chl) and carotenoids (Car). Antioxidant enzymes like glutathione reductase and ascorbate peroxidase significantly increased under water stress. Genotype C 306, which had highest glutathione reductase and ascorbate peroxidase activity, also showed lowest LPO and highest MSI, and Chl and Car contents under water stress in comparison to susceptible genotype HD 2329, which showed lowest antioxidant enzyme activity as well as MSI, Chl and Car contents and highest LPO. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Thus, the relative tolerance of a genotype to water stress as reflected by its comparatively lower LPO and higher MSI, Chl and Car contents is closely associated with its antioxidant enzyme system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Subedi  K.D.  Budhathoki  C.B.  Subedi  M.  Gc  Yubak D. 《Plant and Soil》1997,188(2):249-256
Spikelet sterility in wheat (Triticum aestivum L.) is emerging as a production threat in different parts of Nepal. This study was aimed at determining the effects of sowing date and boron application in controlling spikelet sterility in four different genotypes of spring wheat in a rice-wheat system in the western hills of Nepal. Four genotypes of known different responses to boron were planted on 21 November, 6 December and 21 December, 1994 with or without boron application at 1 kg B ha-1 (i.e. 9 kg borax ha-1) on a soil that was known to be deficient in boron.The effect of sowing date was significant for the phenology, yield components, percentage sterility and grain yield. Sterility was significantly increased in the crop planted on 21 December, which had also the lowest 1000 seed weight and grain yield; there was an almost 50% grain yield reduction compared to the crop planted on 21 November. Terminal moisture stress (i.e. lack of moisture during the later part of the development) was observed in the late sown crop which also amplified the extent of sterility associated with boron deficiency. Genotypes differed in response to sowing dates and boron treatment for all of the phenological events measured, yield components, grain yield and percentage sterility. SW-41 and BL-1022 had significantly higher sterility at all sowing dates. BL-1249 showed a consistently lower% sterility over all sowing dates and boron treatments. The addition of boron significantly increased the number of grains set per spike thereby decreasing the total sterility in boron responsive genotypes SW-41 and BL-1022 while those not susceptible did not respond. The boron concentration in the flag leaf at anthesis was increased in treatments with added B in the soil but genotypes did not differ in boron concentration for any soil treatment.  相似文献   

9.
In early seedlings of wheat genotypes two isoforms of Rubisco activase with molecular weights of 42 and 46 kDa are expressed. Amounts of both isoforms significantly increase in early seedlings of the durum wheat genotype Barakatli-95 exposed to salt stress. But at the beginning of the tillering stage, the changes in quantities of both RCA isoforms are different in durum and bread wheat genotypes subjected to a 3-day drought stress. In the leaves of the early seedlings of the studied wheat genotypes exposed to drought stress quantities of PEPC subunits increase compared to the control but they remain relatively stable in early roots and germinating seeds. However, quantities of its subunits decrease sharply in roots and germinating seeds of early seedlings under the influence of 100 mM NaCl. In flag leaves and ear elements of the Barakatli-95 genotype grown under normal water supply conditions protein quantities of PEPC subunits change differently depending on time. Changes in protein quantities of RCA, PEPC and Rubisco enzymes have been studied comparatively in ear elements and flag leaves after the fourth day of anthesis.  相似文献   

10.
DNA methylation is one of the epigenetic mechanisms regulating gene expression in plants in response to environmental conditions. In this study, analysis of methylation patterns was carried out in order to assess the effect of water stress in two contrasting wheat genotypes using methylation-sensitive amplified polymorphism (MSAP). The results revealed that demethylation was higher in drought-tolerant genotype (C306) as compared to drought-sensitive genotype (HUW468) after experiencing drought stress. Comparisons of different MSAP patterns showed a high percentage of polymorphic bands between tolerant and susceptible wheat genotypes (from 74.79 % at anthesis to 88.89 % at tillering). Furthermore, differential DNA methylation in roots and leaves also revealed tissue-specific methylation of genomic DNA. Interestingly, 54 developmental stage-specific bands and 23 bands that were found contrasting between these two wheat genotypes were detected. Furthermore, a few sites with stable DNA methylation differences were identified between drought-tolerant and drought-sensitive cultivars, thus providing genotype-specific epigenetic markers. These results not only provide data on differences in DNA methylation changes but also contribute to dissection of molecular mechanisms of drought response and tolerance in wheat.  相似文献   

11.
Terminal heat stress is one of the limiting factors in wheat production and it is expected to rise under present scenario of climate change. The present study was conducted to evaluate the performance of 40 wheat genotypes under terminal heat stress conditions based on eight physiological traits. The plants were sown late (i.e. on 5th January) to expose them terminal heat stress. The genotypes were evaluated using multivariate analysis viz. Ward’s method of hierarchical clusters analysis, discriminant analysis and principle component analysis. The genotypes were categorized into three groups namely tolerant, intermediate and sensitive. Tolerant genotypes like DBW 14, RAJ 3765, HD 2643 and HALNA performed physiologically better in terms of higher membrane stability index (MSI), chlorophyll content, photosynthesis rate (Pn), harvest index under heat stress conditions. Genotypes HD 2987, SHANGHAI, HD 2402 and WH 730 were found to be heat sensitive. Physiological traits like MSI, SPAD value, Fv/Fm ratio and Pn were found to be most important contributor in grouping of genotypes and showed positive correlations (r) of 0.73, 0.47, 0.41 and 0.39 with grain yield, respectively, which is significant at p < 0.05. The large genetic diversity was found among the genotypes based on physiological traits. These genotypes can be utilized in wheat improvement programme for heat tolerance.  相似文献   

12.
Field experiments for evaluating heat tolerance-related physiological traits were conducted for two consecutive years using a mapping population of recombinant inbred lines (RILs) from the cross RAJ4014/WH730. Chlorophyll content (Chl) and chlorophyll fluorescence (CFL) were recorded under timely sown (TS) and late sown (LS) conditions. Late sowing exposes the terminal stage of plants to high temperature stress. Pooled analysis showed that CFL and Chl differed significantly under TS and LS conditions. The mean value of CFL (Fv/Fm) and Chl under both timely and late sown conditions were used as physiological traits for association with markers. Regression analysis revealed significant association of microsatellite markers viz., Xpsp3094 and Xgwm131 with coefficients of determination (R2) values for CFL (Fv/Fm) and Chl as 12 and 8 %, respectively. The correlation between thousand grain weight (TGW) with Chl and CFL were 14 and 7 % and correlation between grain wt./spike with Chl and CFL were 15 and 8 %, respectively. The genotypes showing tolerance to terminal heat stress as manifested by low heat susceptibility index (HSI = 0.43) for thousand grain weight, were also found having very low Chl, HSI (−0.52). These results suggest that these physiological traits may be used as a secondary character for screening heat-tolerant genotypes.  相似文献   

13.
High ambient temperature (32/27 °C, day/night, 12 h photoperiod) applied prior to anthesis to Phaseolus vulgaris plants results in abnormal pollen and anther development during microsporogenesis. Scanning and transmission electron microscopy were used to examine anther and pollen morphology and pollen wall architecture after heat stress was applied to two genotypes that differ with respect to yield potential under high‐temperature field conditions: one, a heat‐sensitive, Mesoamerican genotype, A55, the second, a heat‐tolerant, Andean genotype, G122. High‐temperature treatment of both genotypes was applied 1–13 d before anthesis. Under heat stress, the heat‐tolerant genotype showed anther and pollen characteristics that were generally similar to the low temperature controls. In contrast, after 9 d of heat treatment before anthesis, the anthers of the heat‐sensitive genotype were indehiscent and contained abnormal pollen. Pollen wall architecture was also affected in the 12 and 13 d treatments. In addition to the morphological changes, the heat‐sensitive genotype also experienced reduced pollen viability and reduced yield in high‐temperature experiments conducted in both the greenhouse and field.  相似文献   

14.
The objective of this work was to evaluate the ability of some physiological traits to identify drought-tolerant bread wheat genotypes. To this end, twenty bread wheat genotypes were assessed under post anthesis drought stress (rain-fed) and irrigated conditions. The Stress Tolerance Index (STI) was used as a measure of drought tolerance. Relationships between STI and Cell Membrane Stability (CMS), Proline Concentration (PC), Relative Water Content (RWC), Chlorophyll a/b Ratio (Chl a/b), Relative Chlorophyll Content (RCC), Excised Leaf Water Retention (ELWR), and Relative Water Loss (RWL) were determined in order to find out whether these physiological traits could be used as the indicators of drought tolerance. The results showed that ELWR, RWL, and CMS could be considered as reliable indicators in screening wheat genotypes for drought tolerance.  相似文献   

15.
小麦产量与品质对灌浆不同阶段高温胁迫的响应   总被引:36,自引:0,他引:36       下载免费PDF全文
利用人工环境控制室对盆栽冬小麦 (品种 :‘济南 17’和‘鲁麦 2 1’) (Triticumaestivumcv.‘Ji′nan17’and‘Lumai2 1’) 分别在子粒灌浆前期、中期和后期进行了 2 5℃ / 35℃ (夜 /昼 ) 的高温胁迫处理, 以生长在 2 0℃ / 30℃ (夜 /昼 ) 环境中的小麦为对照, 研究了灌浆期不同阶段高温胁迫对小麦产量和品质的影响。结果发现 :1) 子粒蛋白质积累速率在高温处理期间显著提高 (p<0.0 5 ), 但高值持续期缩短, 并最终造成植株氮素积累量减少, 氮素收获指数降低 (p <0.0 5 ) 。 2 ) 小麦蛋白质的组成和品质对不同灌浆阶段的响应存在显著差异, 前期高温胁迫导致麦谷蛋白 /醇溶蛋白的比值以及麦谷蛋白大聚合体 (GMP) 含量增加, 标志蛋白质和淀粉品质的湿面筋含量升高、沉降值增加、膨胀势和高峰粘度等指标也显著提高 ;灌浆中期高温却导致上述指标降低 ;灌浆后期高温在造成粒重减小、产量降低和淀粉品质下降的同时, 却有利于蛋白质含量的提高。 3) 小麦淀粉积累的形成与蛋白质品质的形成是两个既相互联系又相互独立的过程, 高温条件下子粒蛋白质含量的升高是淀粉积累量减少造成的。  相似文献   

16.
Environmental stresses are forcing breeders to produce new plant genotypes with higher resistance to stressors. Biochemical markers of stress tolerance would assist in the selection of tolerant cultivars on the early stages of plant development. The aim of these studies was to examine whether the concentration of micro and macroelements of embryos and/or endosperm could specify the wheat grains in terms of their tolerance to stress conditions. Two sensitive to drought (Radunia and Raweta), two tolerant (Nawra and Parabola) and one with intermediate tolerance (Manu) were chosen. After dividing embryos and endosperm, the microelements content (Mn, Fe, Cu, Zn and Mo) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and macroelements (K, Ca, Mg, P and S) by inductively coupled plasma optical emission spectrometry (ICP-OES). Independent of genotype, the concentration of all elements was higher in embryos than in endosperm. In both embryos and endosperm of tolerant plants, higher content of microelements (except for Cu in embryos) was detected. The accumulation of macroelements was lower in embryos of tolerant plants (except for K), however, in the case of endosperm, higher amounts of these elements, were registered. In embryos of Manu genotype, the content of microelements was more alike to sensitive and macroelements to tolerant plants but in endosperm, the level of both micro- and macroelements was more similar to tolerant ones. It was concluded that mineral composition of wheat grains, especially those in embryos, could inform about possible resistance of genotypes to stress conditions.  相似文献   

17.
Globally among biotic stresses, diseases like blight, rust and blast constitute prime constraints for reducing wheat productivity especially in Bangladesh. For sustainable productivity, the development of disease-resistant lines and high yielding varieties is vital and necessary. This study was conducted using 122 advanced breeding lines of wheat including 21 varieties developed by Bangladesh Wheat and Maize Research Institute (BAMRI) with aims to identify genotypes having high yield potential and resistance to leaf blight, leaf rust and blast diseases. These genotypes were evaluated for resistance against leaf blight and leaf rust at Dinajpur and wheat blast at Jashore under field condition. Out of 122 genotypes tested, 20 lines were selected as resistant to leaf blight based on the area under the diseases progress curve (AUDPC) under both irrigated timely sown (ITS) and irrigated late sown (ILS) conditions. Forty-two genotypes were found completely free from leaf rust infection, 59 genotypes were identified as resistant, and 13 genotypes were identified as moderately resistant to leaf rust. Eighteen genotypes were immune against wheat blast, 42 genotypes were categorized as resistant, and 26 genotypes were identified as moderately resistant to wheat blast. Molecular data revealed that the 16 genotypes showed a positive 2NS segment among the 18 immune genotypes selected against wheat blast under field conditions. The genotypes BAW 1322, BAW 1295, and BAW 1203 can be used as earlier maturing genotypes and the genotypes BAW 1372, BAW 1373, BAW 1297 and BAW 1364 can be used for lodging tolerant due to short plant height. The genotypes WMRI Gom 1, BAW 1349 and BAW 1350 can be selected for bold grain and the genotypes WMRI Gom 1, BAW 1297, BAW 1377 can be used as high yielder for optimum seeding condition but genotypes BAW 1377 and BAW 1366 can be used for late sown condition. The selected resistant genotypes against specific diseases can be used in the further breeding program to develop wheat varieties having higher disease resistance and yield potential.  相似文献   

18.
Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants.  相似文献   

19.
Our experiment was carried out in order to explore effects of plant growth regulators (PGR; thidiazuron, paclobutrazol, and ascorbic acid) on physiological traits of wheat genotypes under water surplus and deficit conditions. Study revealed that relative water content, membrane stability index, chlorophyll content, photosynthetic rate (PN), and maximal quantum yield of PSII improved with PGRs application across the genotypes both under irrigation and water stress. The response of HD 2733 genotype was more positive toward PGRs treatment as compared to other genotypes under water stress. Higher PN and chlorophyll contents were observed in HD 2987 followed by C 306 genotype under water-stress conditions. Moreover, Rubisco small subunit (SSU) expression was lower in wheat genotypes under water stress as compared to irrigated conditions. Application of PGRs led to upregulation of SSU under water stress, while no significant change was found in Rubisco level and activity under irrigated condition in dependence on PGRs treatments. Yield-related traits showed also significant reduction under water-stress conditions, while application of PGRs enhanced the yield and its components. Results indicated that the PGRs exhibited a positive interaction and synergetic effect on water stressed wheat plants in terms of photosynthetic machinery and yield.  相似文献   

20.
High temperature (HT, heat) stress is detrimental to wheat (Triticum aestivum L.) production. Wild relatives of bread wheat may offer sources of HT stress tolerance genes because they grow in stressed habitats. Wheat chromosome translocation lines, produced by introgressing small segments of chromosome from wild relatives to bread wheat, were evaluated for tolerance to HT stress during the grain filling stage. Sixteen translocation lines and four wheat cultivars were grown at optimum temperature (OT) of 22/14°C (day/night). Ten days after anthesis, half of the plants were exposed to HT stress of 34/26°C for 16 d, and other half remained at OT. Results showed that HT stress decreased grain yield by 43% compared with OT. Decrease in individual grain weight (by 44%) was the main reason for yield decline at HT. High temperature stress had adverse effects on leaf chlorophyll content and Fv/Fm; and a significant decrease in Fv/Fm was associated with a decline in individual grain weight. Based on the heat response (heat susceptibility indices, HSIs) of physiological and yield traits to each other and to yield HSI, TA5594, TA5617, and TA5088 were highly tolerant and TA5637 and TA5640 were highly susceptible to HT stress. Our results suggest that change in Fv/Fm is a highly useful trait in screening genotypes for HT stress tolerance. This study showed that there is genetic variability among wheat chromosome translocation lines for HT stress tolerance at the grain filling stage and we suggest further screening of a larger set of translocation lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号