首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subfragment-1 was prepared from adult chicken pectoralis myosin by limited digestion with alpha-chymotrypsin, and an amino-terminal 23 kDa fragment of the heavy chain was obtained by digesting the subfragment-1 with trypsin. The 205-residue sequence of the fragment was determined by sequencing its cyanogen bromide, tryptic, and chymotryptic peptides. The amino-terminal alpha-amino group of the fragment was acetylated, and two methylated lysines; epsilon-N-monomethyllysine and epsilon-N-trimethyllysine were recognized at the 35th and 130th positions, respectively, as in rabbit skeletal myosin. Comparing the 205-residue sequence of the skeletal myosin with those of cardiac, and gizzard myosins from chicken, considerable differences are recognized, especially in the amino-terminal region, but strong homologies are observed around the reactive lysine residue, around the epsilon-N-trimethyllysine residue, and around the consensus sequence of GXXGXGKT for nucleotide-binding proteins. On the other hand, only 12 amino acid substitutions are recognized between adult and embryonic skeletal myosins, allowing for the post-translational methylation.  相似文献   

2.
The amino acid sequence of the 197-residue 22 kDa fragment from chicken pectoralis muscle was determined to be as follows: K-K-G-S-S-F-Q-T-V-S-A-L-F-R-E-N-L-N-K-L- M-A-N-L-R-S-T-H-P-H-F-V-R-C-I-I-P-N-E-T-K-T-P-G-A-M-E-H-E-L-V-L-H-Q-L-R- C-N-G-V- L-E-G-I-R-I-C-R-K-G-F-P-S-R-V-L-Y-A-D-F-K-Q-R-Y-R-V-L-N-A-S-A-I-P-E-G-Q- F-M-D-S- K-K-A-S-E-K-L-L-G-S-I-D-V-D-h-T-Q-Y-R-F-G-H-T-K-V-F-F-K-A-G-L-L-G-L-L-E- E-M-R-D- D-K-L-A-E-I-I-T-R-T-Q-A-R-C-R-G-F-L-M-R-V-E-Y-R-R-M-V-E-R-R-E-S-I-F-C-I- Q-Y-N-V-R-S-F-M-N-V-K-H-W-P-W-M-K-L-F-F-K, where h stands for 3-N-methylhistidine. The amino acid sequences of the 22 kDa fragment and its equivalent fragment from chicken ventricle and gizzard muscle myosins were also determined by our group. Predicted secondary structures of these 22 kDa fragment regions and of the reported chicken embryo myosin revealed some possible structural differences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The amino acid sequence of the 50-kDa fragment that is released by limited tryptic digestion of the head portion of rabbit skeletal muscle myosin was determined by analysis and alignment of sets of peptides generated by digestion of the fragment at arginine or methionine residues. This fragment contains residues 205-636 of the myosin heavy chain; among the residues of particular interest in this fragment are N epsilon-trimethyllysine, one of four methyl-amino acids in myosin, and Ser-324, which is photoaffinity labeled by an ATP analogue (Mahmood, R., Elzinga, M., and Yount, R. G. (1989) Biochemistry 28, 3989-3995). Combination of this sequence with those of the 23- and 20-kDa fragments yields an 809-residue sequence that constitutes most of the heavy chain of chymotryptic S-1 of this myosin.  相似文献   

4.
In the preceding paper [Maita, T., Miyanishi, T., Matsuzono, K., Tanioka, Y., & Matsuda, G. (1991) J. Biochem. 110, 68-74], we reported the amino-terminal 837-residue sequence of the heavy chain of adult chicken pectoralis muscle myosin. This paper describes the carboxyl terminal 1,097-residue sequence and the linkage of the two sequences. Rod obtained by digesting myosin filaments with alpha-chymotrypsin was redigested with the protease at high KCl concentration, and two fragments, subfragment-2 and light meromyosin, were isolated and sequenced by conventional methods. The linkage of the two fragments was deduced from the sequence of an overlapping peptide obtained by cleaving the rod with cyanogen bromide. The rod contained 1,039 amino acid residues, but lacked the carboxyl-terminal 58 residues of the heavy chain. A carboxyl-terminal 63-residue peptide obtained by cleaving the whole heavy chain with cyanogen bromide was sequenced. Thus, the carboxyl terminal 1,097-residue sequence of the heavy chain was completed. The linkage of subfragment-1 and the rod was deduced from the sequence of an overlapping peptide between the two which was obtained by cleaving heavy meromyosin with cyanogen bromide. Comparing the sequence of the adult myosin thus determined with that of chicken embryonic myosin reported by Molina et al. [Molina, M.I., Kropp, K.E., Gulick, J., & Robbins, J. (1987) J. Biol. Chem. 262, 6478-6488], we found that the sequence homology is 94%.  相似文献   

5.
The heavy chain of subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96K. The heavy chain was split into 26 K, 50 K, and 21 K fragments by trypsin. When the trypsin-treated subfragment-1 was cross-linked with dimethyl suberimidate, cross-linked products of 26 K, 50 K, and 21 K fragments and of 50 K and 21 K fragments appeared, but there was little cross-linked product of 26 K and 50 K fragments or of 26 K and 21 K fragments. When the cross-linking experiments were carried out in the presence of actin, a new band appeared and the amount of cross-linked product of 26 K, 50 K, and 21 K fragments decreased by about 50%. The molecular weight of the new band was lower than that of the cross-linked product of 26 K, 50 K, and 21 K fragments, and higher than that of the dimer of actin. Based on this and some other results, we suggest that this band represented a cross-linked product of actin and the 50 K fragment. We also suggest that the decrease in the amount of cross-linked product of 26 K, 50 K, and 21 K fragments reflected the conformational change in subfragment-1 due to the binding of actin.  相似文献   

6.
Antibody was prepared against the 25,000-dalton tryptic fragment of subfragment-1 from skeletal muscle myosin. The antibody was found to inhibit the Mg2+-ATPase activity and the initial P1-burst of the ATPase. The antibody suppressed the ATP-induced fluorescence enhancement of S-1, though it did not suppress the binding of ATP to S-1. The acto-S-1 ATPase activity was also inhibited by the antibody. These results suggest that there is a site in the 25K fragment region responsible for the transition of the myosin-ATP complex to another high energy complex.  相似文献   

7.
Three monoclonal antibodies directed against human platelet myosin heavy chains (MCH) that recognize homologous sequences contained within the functionally active subfragment-1, in platelet and rabbit skeletal muscle myosin were studied. These antibodies are distinguished by their affinities to different myosins and their differential effect on various ATPase activities. Epitope mapping was accomplished by analyzing antibody binding to proteolytic peptides of myosin head subfragment-1 under various experimental conditions. The epitopes recognized by these anti-human platelet MHC monoclonal antibodies reside within a small region of the 50 kDa fragment, beginning 9 kDa from its C-terminus and extending a stretch of 6 kDa towards the N-terminus. These epitopes lie between residues 535-586, and are contained within a highly conserved area of myosin heavy chain.  相似文献   

8.
The binding of one of the alkali light chains of myosin, A1, with the isolated renatured 20-kDa fragment of myosin subfragment-1 heavy chain was demonstrated by means of difference UV absorption spectroscopy. The difference spectrum with either rabbit or chicken A1 showed two characteristic peaks at 279 and 287 nm indicating a perturbation of tyrosyl chromophores by the association with the 20-kDa fragment. The delta epsilon at 287 nm increased with an increase in the molar ratio of A1/20-kDa fragment and reached a maximum value at around equimolar ratio. The maximum delta epsilon value was approximately three times larger with rabbit A1 than with chicken A1. Based on the positions of Tyr residues in the amino acid sequences, the contact surface of A1 with myosin heavy chain was concluded to be spread over a large area of A1. The binding of 20-kDa fragment with F-actin was measured by following the increase in turbidity. The affinity appeared to increase several times in the presence of A1. A1 may possibly control the affinity of myosin for actin.  相似文献   

9.
10.
1. The physical, chemical and enzymic properties of subfragment 1 prepared from myosin of rabbit skeletal muscle by using two different concentrations of insoluble papain were compared. 2. Subfragment 1 prepared by using a myosin/papain ratio of 2000: 1 (by wt.) migrated on electrophoresis in non-dissociating conditions as a single enzymically active band. When prepared with a myosin/papain ratio of 200: 1 the preparation consisted of two enzymically active components of slightly different electrophoretic mobility. 3. The two types of preparation were obtained in similar yield and possessed similar specific adenosine triphosphatase activities when determined in the presence of Ca(2+). 4. Gel electrophoresis in the presence of 8m-urea showed that both preparations contained three light components. The component of molecular weight 15500 was apparently identical with one of the light-chain components of myosin (Ml(1)). The other two light-chain components of subfragment 1 were not identical with any of the light-chain components of myosin. 5. The heavy-chain fraction of subfragment 1 prepared by using low concentrations of papain dissociated into components with molecular weights of 87000, 69000 and 26000 on electrophoresis in sodium dodecyl sulphate. The heavy-chain fraction of subfragment 1 prepared by using higher concentrations of papain contained components with molecular weights of 69000 and 53000 and relatively increased amounts of the component of molecular weight 26000. 6. The isolated 26000 dalton component had an amino acid composition similar to that of the heavy-chain fraction of subfragment 1 and contained 3-methylhistidine and mono-and tri-N(epsilon)-methyl-lysine. It was homogeneous on electrophoresis in the presence of sodium dodecyl sulphate but gave two bands on electrophoresis in 8m-urea.  相似文献   

11.
This study investigated the effects of exercise training duration on the myosin heavy chain (MHC) isoform distribution in rat locomotor muscles. Female Sprague-Dawley rats (120 days old) were assigned to either a sedentary control group or to one of three endurance exercise training groups. Trained animals ran on a treadmill at approximately 75% maximal O2 uptake for 10 wk (4-5 days/wk) at one of three different exercise durations (30, 60, or 90 min/day). Training resulted in increases (P < 0.05) in citrate synthase activity in the soleus and extensor digitorum longus in both the 60 and 90 min/day duration groups and in the plantaris (Pla) in all three exercise groups. All durations of training resulted in a reduction (P < 0.05) in the percentage of MHCIIb and an increase (P < 0.05) in the percentage of MHCIIa in the Pla. The magnitude of change in the percentage of MHCIIb in the Pla increased as a function of the training duration. In the extensor digitorum longus, 90 min of daily exercise promoted a decrease (P < 0.05) in percentage of MHCIIb and increases (P < 0.05) in the percentages of MHCI, MHCIIa, and MHCIId/x. Finally, training durations >/=60 min resulted in an increase (P < 0.05) in the percentage of MHCI and a concomitant decrease (P < 0.05) in the percentage of MHCIIa in the soleus. These results demonstrate that increasing the training duration elevates the magnitude of the fast-to-slow shift in MHC phenotype in rat hindlimb muscles.  相似文献   

12.
Synthesis, accumulation and breakdown of the 200000-mol.wt. heavy subunit of myosin were analysed over an 11 day period in muscle cell cultures isolated from the leg muscle of 12-day chick embryos. Muscle cells accumulated myosin heavy chain rapidly from days 2 to 5 and maintained a maximum, constant myosin-heavy-chain concentration between days 7 and 11. Myosin-heavy-chain content and breakdown rate were compared in steady-state muscle cultures grown either in the presence of an optimum batch of horse serum (control) or in the presence of horse serum that had been pre-selected for its ability to inhibit several-fold the rate of synthesis of myosin heavy chain (inhibitory). The quantity of myosin heavy chain in the inhibited cultures was decreased in direct proportion to the decrease in the rate of synthesis of myosin heavy chain; however, the half-lives of myosin heavy chain (control, 17.7h; inhibitory, 17.0h) were virtually identical. In contrast, the absolute rate of breakdown of myosin heavy chain, expressed as molecules/min per nucleus, was approx. 5-fold lower in the inhibited cultures (4.3 X 10(3) molecules/min per nucleus) than in the control cultures (21.7 X 10(3) molecules/min per nucleus). Thus, inhibition of myosin-heavy-chain synthesis in this case was accompanied by diminished myosin-heavy-chain concentration and absolute breakdown rate at the altered steady state, but relative myosin-heavy-chain breakdown rates were unchanged.  相似文献   

13.
The heavy chain fragments generated by restricted proteolysis of the smooth chicken gizzard myosin subfragment-1 (S-1) with trypsin, Staphylococcus aureus V8 protease, and chymotrypsin were isolated and submitted to partial amino acid sequencing. The comparison between the smooth and striated muscle myosin sequences permitted the unambiguous structural characterization of the two protease-vulnerable segments joining the three putative domain-like regions of the smooth head heavy chain. The smooth carboxyl-terminal connector is a serine-rich region located around positions 632-640 of the rabbit skeletal sequence and would represent the "A" site that is conformationally sensitive to the myosin 10 S-6 transition and to its interaction with actin (Ikebe, M., and Hartshorne, D. J. (1986) Biochemistry 25, 6177-6185). A third site which undergoes a nucleotide-dependent chymotryptic cleavage which inactivates the Mg2+-ATPase (Okamoto, Y., and Sekine, T. (1981) J. Biochem. (Tokyo) 90, 833-842, 843-849) was identified at Trp-31/Ser-32. It is vicinal to Lys-34 that is monomethylated in the skeletal heavy chain but not at all in the smooth sequence. However, the two trimethyl lysine residues present in the skeletal sequence are conserved in the same regions of the smooth S-1 and may play a general functional role in myosin. The smooth central 50-kDa segment could be selectively destroyed by a mild tryptic digestion in the absence of any unfolding agent, with a concomitant inhibition of the ATPase activities. This feature is in line with the proposed domain structure of the S-1 heavy chain and also suggests a relationship between the specific biochemical properties of the smooth S-1 and the particular conformation of its 50-kDa region.  相似文献   

14.
To determine the reason why the Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin was activated more by actin than that of subfragment-1 prepared with trypsin was and the reason why the former could enhance the polymerization of actin and the latter could not, we digested subfragment-1, prepared with chymotrypsin, with trypsin and examined the actin activated Mg2+-ATPase activity and the ability to polymerize actin. It was found that cleavage of the heavy chain decreased the actin activated Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin but did not affect its ability to polymerize actin. Trypsin attacked the subfragment-1 heavy chain at two sites and produced 26 K, 50 K, and 21 K fragments. From the comparison of the time course of tryptic digestion with that of the decrease in actin activation, it was deduced that cleavage of the 50 K-21 K junction was mainly responsible for the decrease in actin activation. We also measured the length and the amount of F-actin polymerized by the addition of different amounts of subfragment-1. It was found that the amount of F-actin increased with the increase in the amount of subfragment-1 added and that the length of F-actin also increased though slightly. We concluded from the results that subfragment-1 enhanced the polymerization not only by facilitating the nucleus formation but also by strengthening the bond between actin monomers in forming F-actin.  相似文献   

15.
16.
Modification of the free alkali light chains of myosin by iodoacetylation results in a much lower extent of exchange into myosin subfragment 1 by the thermal hybridization procedure (Burke, M., and Sivaramakrishnan, M. (1981) Biochemistry 20, 5908-5913). As reported by others (Wagner, P. D., and Stone, D. B. (1983) J. Biol. Chem. 258, 8876-8882), free alkali light chains modified by iodoacetate at their single sulfhydryl residue exhibit minimal exchange into intact myosin. However, when unmodified alkali light chain is used to probe for exchange, close to the theoretical limit of exchange is observed for subfragment 1, and significant levels of exchange are found for myosin. It appears that modification of the free alkali light chain alters the structure of the protein, and this causes either a marked reduction in its affinity for the heavy chain or in its ability to enter the light chain binding site. This conclusion is supported by tryptic digestions done on the unmodified and modified free light chains where it is found that the latter is degraded at a much faster rate, indicating a more open structure for the modified protein. The observation that alkali light chain exchanges into myosin when unmodified alkali light chains are used indicates that the presence of the associated 5,5'-dithiobis-(2-nitrobenzoic acid) light chains does not preclude the reversible dissociation of this subunit from myosin under ionic and temperature conditions approaching the physiological state.  相似文献   

17.
The nucleotide sequence of the cDNA encoding myosin heavy chain of chum salmon Oncorhynchus keta fast skeletal muscle was determined. The sequence consists of 5,994 bp, including 5,814 bp of translated region deducing an amino acid sequence of 1,937 residues. The deduced sequence showed 79% homology to that of rabbit fast skeletal myosin and 84-87% homology to those of fast skeletal myosins from walleye pollack, white croaker and carp. The putative binding-sites for ATP, actin and regulatory light-chains in the subfragment-1 region of the salmon myosin showed high homology with the fish myosins (78-100% homology). However, the Loop-1 and Loop-2 showed considerably low homology (31-60%). On the other hand, the deduced sequences of subfragment-2 (533 residues) and light meromyosin (564 residues) showed 88-93% homology to the corresponding regions of the fish myosins. It becomes obvious that several specific residues of the rabbit LMM are substituted to Gly in the salmon LMM as well as the other fish LMMs. This may be involved in the structural instability of the fish myosin tail region.  相似文献   

18.
The purpose of this study was to find the effect of dexamethasone on the myosin heavy chain (MyHC) isoforms' composition in different skeletal muscles and glycolytic (G) fibres in relation with their synthesis rate and degradation of MyHC isoforms by alkaline proteinases. Eighteen-week-old male rats of the Wistar strain were treated with dexamethasone (100 microg/100 g bwt) during 10 days. The forelimb strength decreased from 9.52 to 6.19 N (P<0.001) and hindlimb strength from 15.54 to 8.55 N (P<0.001). Daily motor activity decreased (total activity from 933 to 559 and ambulatory activity from 482 to 226 movements/h, P<0.001). The degradation rate of muscle contractile proteins increased from 2.0 to 5.9% per day (P<0.001), as well as the myosin heavy chain IIB isoform degradation with alkaline proteinase in fast-twitch (F-T) muscles (12 +/- 0.9%; P<0.05) and glycolytic muscle fibres (15 +/- 1.1%; P<0.001). The synthesis rate of MyHC type II isoforms decreased in Pla muscles (P<0.05) and MyHC IIA (P<0.05) and IIB in EDL muscle and G fibres (P<0.001). The relative content of MyHC IIB isoform decreased in F-T muscles (P<0.001) and in G fibres (P<0.01), and the relative content of IIA and IID isoforms increased simultaneously. Dexamethasone decreased the MyHC IIB isoform synthesis rate and increased the sensibility of MyHC IIB isoform to alkaline proteinase, which in its turn led to the decrease of MyHC IIB isoform relative content in F-T muscles with low oxidative potential and G muscle fibres.  相似文献   

19.
A new fluorescent ribose-modified ATP analogue, 2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoic]-ATP (NBD-ATP), was synthesized and its interaction with skeletal muscle myosin subfragment-1 (S-1) was studied. NBD-ATP was hydrolysed by S-1 at a rate and with divalent cation-dependence similar to those in the case of regular ATP. Skeletal HMM supported actin translocation using NBD-ATP and the velocity was slightly higher than that in the case of regular ATP. The addition of S1 to NBD-ATP resulted in quenching of NBD fluorescence. Recovery of the fluorescence intensity was noted after complete hydrolysis of NBD-ATP to NBD-ADP. The quenching of NBD-ATP fluorescence was accompanied by enhancement of intrinsic tryptophan fluorescence. These results suggested that the quenching of NBD-ATP fluorescence reflected the formation of transient states of ATPase. The formation of S-1.NBD-ADP.BeF(n) and S-1.NBD-ADP.AlF(4)(-) complexes was monitored by following changes in NBD fluorescence. The time-course of the formation fitted an exponential profile yielding rate constants of 7.38 x 10(-2) s(-1) for BeF(n) and 1.1 x 10(-3) s(-1) for AlF(4)(-). These values were similar to those estimated from the intrinsic fluorescence enhancement of trp due to the formation of S-1.ADP.BeF(n) or AlF(4)(-) reported previously by our group. Our novel ATP analogue seems to be applicable to kinetic studies on myosin.  相似文献   

20.
Chicken gizzard myosin was modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine (IAEDANS) in the presence of ATP and in 0.15 M KCl, where the myosin assumed 10S conformation. From the tryptic digest of the modified myosin, a fluorescent fragment (24 kilodaltons) was isolated by gel filtration on a Sephadex G-100 column followed by chromatography on a CM 52 column. The amino acid sequence of the fragment was analyzed by conventional methods, and was: (S,Z)K-P-L-S-D-D-E-K-F-L-F-V-D-K-N-F-V-N-N-P-L-A-Q-A-D-W-S-A-K-K- L-V-W-V-P-S-E-K-H-G-F-E-A-A-S-I-K-E-E-K-G-D-E-V-T-V-E-L-Q-E-N-G-K-K- V-T-L-S-K-D-D-I-Q-K-M-N-P-P-K-F-S-K-V-E-D-M-A-E-L-T-C-L-N-E-A-S-V-L- H-N-L-R-E-R-Y-F-S-G-L-I-Y-T-Y-S-G-L-F-C-V-V-I-N-P-Y-K-Q-L-P-I-Y-S-E-K-I- I-D-M-Y-K-G-K-K-R-H-E-M-P-P-H-I-Y-A-I-A-D-T-A-Y-R-S-M-L-Q-D-R-E-D-Q- S-I-L-C-T-G-E-S-G-A-G-K-T-E-N-T-K-K-V-I-Q-Y-L-A-V-V-A-S-S-H-K-G-K. The amino-terminus was blocked, and the fragment was assigned as an amino-terminal part of the heavy chain of gizzard myosin. Position 127 was occupied by epsilon-N-trimethyllysine. Trp-130 of rabbit skeletal myosin heavy chain, which was reported to cross-link to an azide derivative of ATP by Okamoto and Yount (Proc. Natl. Acad. Sci. U.S. 82, 1575-1579 (1985], was replaced by glutamine in gizzard myosin. Cys-93 of the fragment is the amino acid residue whose reaction with IAEDANS alters the ATPase activity of gizzard myosin (Onishi, H. (1985) J. Biochem. 98, 81-86).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号