首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro stability of the Ah receptor from rat hepatic cytosol was evaluated by [3H]TCDD binding studies, gel filtration, and sucrose density gradient ultracentrifugation. Thermal inactivation of unoccupied receptor followed first-order kinetics between 5 and 40 degrees C, with an estimated Ea for inactivation of approximately 35 kcal/mol. Protease inhibitors did not reduce and dilution slightly increased the inactivation rate at 20 degrees C. Recovery and 20 degrees C stability decreased with increasing ionic strength. The TCDD-receptor complex was less susceptible to degradation at 20 degrees C, even in the presence of 0.4 M KCl. Specific binding was markedly pH dependent, with maximum recovery at 7.6. Analysis of the pH curve suggested that cysteine sulfhydryl groups may be involved in TCDD binding. Dithiothreitol (1 mM) maximized recovery and 20 degrees C stability, and addition of the thiol largely reactivated binding sites lost from cytosol prepared without it. Removal of low molecular weight components of cytosol by gel filtration resulted in a rapid 20 degrees C inactivation rate that could not be lessened by dithiothreitol. Glycerol (10% v/v) and EDTA (1.5 mM) maximized recovery of specific binding, but both decreased 20 degrees C stability in a concentration-dependent manner. Calcium chloride (4 mM) increased stability at 20 degrees C by approximately 20%, and retarded the characteristic shift in sedimentation coefficient from approximately 9 to approximately 6 S in high-salt sucrose gradients. The fact that sodium molybdate (20 mM) decreased recovery and 20 degrees C stability when dithiothreitol was present but slightly increased stability in its absence suggested an antagonism between the two compounds. Molybdate mitigated the inactivation induced by 0.4 M KCl, an effect which may be related to the observation of dual peaks in molybdate-containing high-salt sucrose gradients. These data indicate that thermal inactivation of the unoccupied rat hepatic Ah receptor primarily may be due to physical rather than enzymatic processes; (ii) sulfhydryl oxidation, removal of low molecular weight cytosolic components, and high ionic strength result in rapid rates of inactivation at 20 degrees C; and (iii) the large degree of protection conferred by TCDD binding implies a very tight ligand-receptor interaction, and as such accords with TCDDs extraordinary potency and persistence in producing its toxic and biochemical effects.  相似文献   

2.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) produces many of its biological effects by binding to a soluble, intracellular protein (the Ah receptor (AhR]. The hepatic AhR, from a variety of species, is present in low salt cytosol as a form which sediments at 8-10 S. High salt (0.4 M KCL) dissociates the rat, guinea pig, and rabbit cytosolic TCDD:AhR complex to a form which sediments at 5-6 S. In contrast, high salt conditions failed to dissociate the 8-10 S TCDD:AhR complex present in any of the mouse strains studied. Incubation of cytosol with heparin resulted in a shift of the [3H]TCDD:AhR complex to a smaller sedimenting form in all species. Mouse TCDD:AhR complex sedimented at 8-10 S when cytosol was simultaneously incubated with high salt and heparin, indicating that the interaction of heparin with the AhR was electrostatic in nature. Incubation of heparin-dissociated mouse TCDD:AhR complex (5-6 S) with high salt resulted in reassociation of AhR to a form which sediments at 8-10 S. Our data suggests that the resistance of mouse AhR to salt-mediated dissociation may be due to a property of the receptor protein itself and also indicates that mouse hepatic cytosolic AhR is distinctly different from that present in all other species examined to date.  相似文献   

3.
Thyroidectomy of rats confers some protection, by an unknown mechanism, from the weight loss, immunotoxicity, and mortality induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since at least some of the many effects of TCDD appear to be mediated by the Ah receptor, perhaps the thyroid plays a role in regulation of this receptor, thereby modifying the toxicity of TCDD. We tested this hypothesis by comparing TCDD-binding characteristics of the receptor and hepatic enzyme inducibility by TCDD (a receptor-mediated response) in thyroidectomized (ThX) and euthyroid rats. There were no significant differences in levels of TCDD binding in vitro in hepatic cytosol, in receptor affinity, nor in the molecular size of the TCDD-bound receptor in untreated ThX rats compared to controls fed ad libitum or pair-fed. Total hepatic cytochrome P-450 (P-450) levels and NADPH-menadione oxidoreductase (NMOR) activity were unaffected by thyroid status, whereas 7-ethoxycoumarin O-deethylase (ECOD) activity was approx. 50% lower in ThX animals than in ad libitum or pair-fed controls. At 3 and 10 days after TCDD administration (10 micrograms/kg, i.p.), P-450 concentrations and NMOR and ECOD activities were induced by approximately the same proportions in ThX and pair-fed intact rats; however, the absolute levels of the induced activities were lower in ThX than in pair-fed controls. It was concluded that hypothyroidism does not regulate Ah receptor concentration or function in the liver. Therefore, the modulation of TCDD toxicity by hypothyroidism appears not to involve changes in the hepatic Ah receptor.  相似文献   

4.
Saturation binding studies of the interaction between 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the Ah receptor obtained from the hepatic cytosol of Wistar rats have been carried out. The conventional Scatchard analysis for determination of the equilibrium constant for ligand-receptor binding has been shown to be inappropriate due to thermal inactivation of the unoccupied receptor. Simulation models of the receptor-ligand binding kinetics which take into account receptor degradation have been developed and the results are consistent with two alternative kinetic models. In Model 1, reversible 2,3,7,8-TCDD-receptor binding occurs in parallel with inactivation of the unbound receptor; analysis of the observed data using this model suggests that the previously determined equilibrium constants (Kass) for association of the ligand with the receptor are orders of magnitude too low and the total initial receptor concentrations are somewhat underestimated. In Model 2, the unbound receptor is converted unimolecularly to an activated state which then undergoes competitive degradation or entrapment by ligand. Experiments have been carried out over the temperature range 4-37 degrees C, enabling activation parameters to be obtained. According to Scheme 1, the activation enthalpies for association of receptor with ligand and for thermal inactivation of the unoccupied receptor are high, and numerically almost identical (delta H++ ca 125 kJ mol-1). These reactions are strongly entropically driven and this is consistent with association being accompanied by a conformational change in the receptor protein, and the previously postulated binding of the ligand to a hydrophobic pocket. According to Scheme 2, there is only one enthalpy of activation because both inactivation and entrapment by 2,3,7,8-TCDD are fast processes which follow the same slow activation step. On the basis of this latter model, a 10(-9) M concentration of 2,3,7,8-TCDD is sufficient to trap roughly two-thirds of the activated receptors.  相似文献   

5.
Summary In humans, the skin is a particularly sensitive target for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and certain halogenated analogs. Reported lesions include a thickening of the epidermis (acanthosis), hyperkeratosis, and squamous metaplasia of the epithelial lining of the sebaceous glands. In this report we describe ongoing studies on the actions of TCDD on cultured human epidermal cells. This system has been established as an in vitro model for interfollicular epidermal hyperkeratinization. Treatment of newly confluent cultures with TCDD results in enhanced differentiation as judged by histologic examination of the cultures, a decrease in the number of basal proliferating cells, and an increase in the number of envelope competent (differentiating) cells and terminally differentiated cells with highly cross-linked cornified envelopes. Changes in the differentiation program are preceded by a decrease in epidermal growth factor (EGF) binding. The concentration dependence and stereospecificity for these responses suggest the involvement of theAh receptor. We propose that TCDD modulates normal patterns of epidermal differentiation through direct actions on proliferating basal cells, modulating the responsiveness of these cells to growth factors such as EGF. This paper was presented at the Session-In-Depth on In Vitro Applications in Toxicology at the 34th Annual Meeting of the Tissue Culture Association, Orlando, FL, June 12–16, 1983. Rosemarie Osborne was a Chemical Industry Institute of Toxicology Postdoctoral Fellow.  相似文献   

6.
7.
The fetotoxic and teratogenic potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for rhesus macaques (Macaca mulatta) was tested through oral administration to monkeys early in pregnancy. A single or divided dose, 1 μg of TCDD/kg of body weight, was followed by abortion in 13 of 16 pregnant monkeys treated between days 20 and 40 of gestation. One of four aborted at 0.2 μg/kg, and two of two at 5 μg/kg. None of the mothers given 0.2 μg/kg showed signs of toxicity. Eight of the monkeys aborting at 1 μg/kg showed clinical toxicity 44 to 111 days after aborting, and three died. Both given 5 μg/kg became toxic soon after abortion and died. No malformations except for two minor palatal abnormalities of questionable significance were found in the six fetuses that were not aborted at doses of 0.2 and 1.0 μg/kg. These results indicate (1) that TCDD is fetotoxic at doses that frequently have delayed toxicity to the mother, but that conclusions about teratogenicity cannot be drawn, and (2) that pregnant rhesus females are more sensitive to the toxic effects of TCDD than any species tested but the guinea pig.  相似文献   

8.
Molecular properties of cytosolic Ah receptors from livers of Sprague-Dawley rats and C57BL/6N mice were assessed by velocity sedimentation on sucrose gradients and by gel permeation chromatography on Sephacryl S-300. Analyses were done under conditions of both moderate ionic strength (presence of 0.1 M KCl) and high ionic strength (0.4 M KCl). [3H] 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was used as the radioligand. In conditions of moderate ionic strength the receptor from Sprague-Dawley rat liver sedimented at 8.8 +/- 0.05 S, had a Stokes radius of 7.0 +/- 0.21 nm, and an apparent relative molecular mass (Mr) of 257,000 +/- 7,700. In conditions of high ionic strength the Ah receptor from rat hepatic cytosol dissociated to a [3H]TCDD-binding subunit which sedimented at 5.6 +/- 0.58 S, had a Stokes radius of 5.2 +/- 0.24 nm, and an apparent Mr of 121,000 +/- 5,600. The Ah receptor from liver of C57BL/6N mice, in moderate ionic strength conditions, sedimented at 9.4 +/- 0.54 S, had a Stokes radius of 7.1 +/- 0.12 nm, and an apparent Mr of 277,000 +/- 4,800. Whereas the Ah receptor from rat liver readily dissociated into a [3H]TCDD-binding subunit during brief exposure to 0.4 M KCl, the mouse Ah receptor resisted dissociation. When exposed to 0.4 M KCl for 2 h, the mouse Ah receptor remained at the same molecular size that it had exhibited in moderate ionic strength conditions. Prolonged exposure (16 h) to 0.4 M KCl prior to analysis partially converted the mouse Ah receptor into a smaller [3H]TCDD-binding subunit which sedimented at 4.9 +/- 0.07 S, had a Stokes radius of 5.2 +/- 0.19 nm, and an apparent Mr of 105,000 +/- 3,800. The potency of seven different Ah receptor agonists in competing with [3H]TCDD for specific receptor sites was slightly different in mouse cytosol than in rat cytosol. By criteria of size, response to high ionic strength environments, and ligand binding preferences the mouse and rat Ah receptors appear to be similar but not identical molecular species.  相似文献   

9.
The responsiveness of 5 human squamous cell carcinoma (SCC) lines derived from tumors of the epidermis and tongue to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) was assessed by measuring the induction of the cytochrome P1-450-mediated monooxygenase activity, 7-ethoxycoumarin O-deethylase (ECOD). In 4 of the SCC lines the EC50 for this response was approximately 10(-9)M, whereas in one line the EC50 was 10(-10)M. In each of the less sensitive lines a concentration of 10(-10)M TCDD elicited less than 5% of the maximal enzyme activity. Specific binding of radiolabeled TCDD was detected in the cytosol fraction from all the SCC lines. The relative amount of receptor measured in each line correlated with maximally-induced ECOD activity. The data indicate that human cell lines derived from a target tissue for TCDD toxicity contain the TCDD receptor and show differential sensitivity to TCDD analogous to the murine strain differences in sensitivity regulated by the Ah locus.  相似文献   

10.
To understand the basic mechanisms of TCDD's action to cause hypoinsulinemia in several experimental animals, we have studied TCDD-induced changes in various protein kinase activities in membrane preparations of guinea pig pancreas. For this purpose, young male guinea pigs were treated through a single intraperitoneal in jection with 1 or 3 μg/kg of TCDD in vivo, and, after given time periods, pancreas samples were obtained and membranes were isolated through homogenization and centrifugation procedures. Several sets of incubation conditions were selected for protein kinase activity assay, each favoring a specific type of protein kinase. It was found that overall protein phosphorylation activities were higher in the preparation from TCDD-treated an imals as compared to those found in pair-fed controls and that this trend was more pronounced when the assay medium contained Mn2+ in place of Mg2+ and EGTA. These are the conditions that are known to favor protein tyrosine kinases. Other types of protein kinases from the treated animals did not show any significant differences from the pair-fed control animals, though that of protein kinase C in the treated preparation showed a modest increase. To establish that the type of protein kin ases stimulated by TCDD are protein tyrosine kin ases, we have carried out phosphoamino acid analyses, KOH digestion, and western blot analyses using an antibody to phosphotyrosine. All the results were consistent in supporting the idea that TCDD causes a rise in protein-tyrosine kinases in pancreas at early stages of poisoning.  相似文献   

11.
A high prevalence of germinomas has been observed in certain populations of Mya arenaria from eastern Maine. The etiology of these tumors is unknown. We are investigating the hypothesis that exposure to environmental contaminants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contributes to gonadal carcinogenesis. Clams were exposed to TCDD with or without the initiating compound diethylnitrosamine (DEN) in an attempt to induce germinomas. A TCDD-dependent alteration in gametogenesis was observed in which 32.5+/-6.5% of individuals exhibited undifferentiated gonads. Analyses of AhR and p53 expression were carried out to identify similarities between naturally occurring neoplastic and TCDD (+/-DEN)-altered reproductive tissues. Neoplastic tissues had significantly less p53 protein than matched controls, whereas TCDD-induced undifferentiated samples exhibited no difference in p53 protein levels compared to controls. No gender-specific differences were observed in AhR mRNA, but there were significant differences in protein levels. AhR was undetectable in male gonadal tissue whereas females exhibited a significant positive relationship between AhR protein levels and stage of ovogenesis. Despite exhibiting some morphological similarity, we conclude the TCDD-induced pathology is not a germinoma. We further suggest the change in reproductive tissue is due to inhibition of cell differentiation and/or development by an AhR-independent mechanism.  相似文献   

12.
The aryl hydrocarbon receptor repressor (AHRR) is a negative regulator of AH receptor (AHR), which mediates most of the toxic and biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR has been shown to be the major reason for the exceptionally wide (ca. 1000-fold) sensitivity difference in acute toxicity of TCDD between two rat strains, sensitive Long-Evans (Turku/AB) (L-E) and resistant Han/Wistar (Kuopio) (H/W), but there is another, currently unknown contributing factor involved. In the present study, we examined AHRR structure and expression in these rat strains to find out whether AHRR could be this auxiliary factor. Molecular cloning of AHRR coding region showed that consistent with AHRR proteins in other species, the N-terminal end of rat AHRR is highly conserved, but PAS B and Q-rich domains are severely truncated or lacking. Identical structures were recorded in both strains. Next, the time-, dose-, and tissue-dependent expression of AHRR was determined using quantitative real-time RT-PCR. In liver, AHRR expression was very low in untreated rats, but it increased rapidly after TCDD exposure (100microg/kg). Testis exhibited the highest constitutive expression of AHRR, whereas kidney, spleen, and heart showed the highest induction of AHRR in response to TCDD treatment. Again, no marked differences were found between H/W and L-E rats, implying that AHRR is not the auxiliary contributing factor to the strain difference in TCDD sensitivity. However, simultaneous measurement of CYP1A1 mRNA reinforced the view that AHRR is an important determinant of tissue-specific responsiveness to TCDD.  相似文献   

13.
14.
Ah receptor in hepatic cytosols from adult cynomolgus monkeys (Macaca fasicularis) was identified and quantitated by its binding of the highly toxic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the carcinogens 3-methylcholanthrene, benzo[a]pyrene, and dibenz[a,h]anthracene. The concentration of Ah receptor in cynomolgus hepatic cytosols (approximately 10 fmol/mg cytosol protein) was about one-quarter of that typically detected in rodent hepatic cytosols. Receptor concentrations were equal in male and female cynomolgus. [3H]TCDD bound to cytosolic receptor with high affinity (Kd approximately 3 nM). In rodents, Ah receptor is known to play a central role in toxicity caused by halogenated aromatic compounds and in carcinogenesis caused by polycyclic aromatic hydrocarbons. Existence of Ah receptor in monkeys indicates that the receptor also may mediate such responses in primates.  相似文献   

15.
To study the cause of TCDD-evoked changes in the functions of plasma membrane constituents TCDD's effects on protein kinase activities in the liver of rats and guinea pigs were investigated. TCDD was found to cause a sharp increase in both c-AMP independent and dependent protein kinase activities in plasma membrane preparations from rat liver within 48 hours from the time of administration. Such effects reached maxima around day 20, and were quite noticeable even 40 days after a single administration of TCDD. As a result of SDS-polyacrylamide gel-electrophoresis (SDS-PAGE) analysis several substrate proteins for these increased protein kinases were observed. Among them are 170 K - 150 K bands, representing EGF receptor protein. TCDD was found to particularly stimulate protein kinase C which is known to influence many enzyme and receptor functions through protein phosphorylation. The possible significance of such an action of TCDD is discussed.  相似文献   

16.

Background  

Exposure to dioxins results in a broad range of pathophysiological disorders in human fetuses. In order to evaluate the effects of dioxins on the feto-placental tissues, we analyzed the gene expression in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treated primary cultures of human amniotic epithelial cells.  相似文献   

17.
Activation of the aryl hydrocarbon receptor (AhR) by TCDD may lead to the induction of proinflammatory cytokines in various cell types and organs such as liver leading to active chronic inflammation. Here we studied the expression of the chemokines keratinocyte chemoattractant (KC) and monocyte chemoattractant protein 1 (MCP-1) in different organs of mice after exposure to TCDD. TCDD exposure led to an early and clear induction of KC in liver and spleen on day 1 which was sustained over a period of 10 days. The level of MCP-1 mRNA was induced by TCDD on day 1 in spleen, lung, kidney, and liver, which was further increased at day 7. Increase of KC and MCP-1 at day 7 in liver, thymus, kidney, adipose, and heart was associated with elevated levels of the macrophage marker F4/80, indicating the infiltration of macrophages in these organs. Induction of KC requires a functional AhR since mice with a mutation in the AhR nuclear localization domain (AhR(nls)) were found to be resistant to TCDD-induced expression of KC. These results are the first showing the induction of the chemokines KC and MCP-1 in multiple organs of mice associated with an increase of the macrophage marker F4/80 indicating the involvement in TCDD's inflammatory response like infiltration of macrophages.  相似文献   

18.
The interaction of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and estrogen was studied in chickens to more clearly define this relationship in an avian species and its role in the enhanced sensitivity of female chickens to TCDD-induced wasting syndrome. Twenty male chickens (7-9 weeks old) were divided evenly into four groups: control (CTL, received the same volume of vehicle); estrogen-treated (E2, 1 mg/kg estradiol cypionate injections on days 1, 2 and 3); TCDD-treated (TCDD, single 50 microg/kg injection on day 4); and estrogen plus TCDD (E2+TCDD, as above), with measurements taken on day 14. The E2 group compared with the CTL group had decreased comb height (24%), comb length (26%) and adipose tissue (AT) lipoprotein lipase (LPL) activity relative to AT mass (51%), while liver mass and body weight gain were each increased by 28%. The TCDD group had increased liver mass (62%), reduced comb length (17%), and reduced AT LPL activity indexed to AT mass (70%) compared with the CTL group. Finally, the E2+TCDD group had 37% lower body weight gain and 30% larger livers relative to body mass compared with the E2 group, but were not significantly different from the TCDD group. These data show that TCDD antagonized several effects of exogenous estrogen in male chickens, while estrogen enhanced TCDD toxicity in a tissue-specific manner.  相似文献   

19.
20.
Testes of rats, which had been injected with a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.3 micrograms/kg-25 micrograms/kg body weight [BW]), were studied after 7 days using morphological and histochemical means. Light and electron microscopic examination revealed that TCDD affected testicular morphology in a dose-dependent manner. TCDD led to decreased intercellular contact, indicated by wide intercellular spaces between Sertoli cells between and Sertoli cells and neighbouring germ cells. Morphological alaterations in rat testes after TCDD administration included the sloughing off of premature spermatids into the tubular lumen and numerical increase of necrotic germ cells, in particular pachytene spermatocytes. Compared with control animals, Sertoli cells of treated rats exhibited an increased amount of lipid droplets and phagolysosomes. Vacuolization of the cytoplasm and fragmentation of the Sertoli cells occurred frequently. Examination of the different spermatogenic stages revealed that no stage was specifically susceptible to TCDD. In Leydig cells a decrease in enzyme activity of 3 beta- and 17 beta-hydroxysteroid dehydrogenases became evident by histochemical investigation. This effect on steroidogenesis was already found at a dose of 1 microgram/kg BW TCDD, whereas morphological effects were seen in the germinal epithelium for the first time at 3 micrograms/kg BW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号