首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micropropagation of Fraxinus angustifolia Vahl has been successfully achieved both from mature and juvenile plant material using shoot tip and nodal explants. Several basal media supplemented with benzyladenine (BA) and indolebutyric acid (IBA) were tested for shoot proliferation. The most new explants per mature explant (5.3) was obtained on DKW medium plus 4.4 M BA+0.98 M IBA. The most new explants per juvenile explant (5.6) was produced on QL medium plus 8.9 M BA+0.49 M IBA. Rooting was achieved on WPM supplemented with 0.98–4.9 M IBA. Rooted plantlets were transferred to soil and acclimatized with 85% survival.Abbreviations BA benzyladenine - IBA indolebutyric acid - NAA 1-naphthaleneacetic acid  相似文献   

2.
Dormant buds from a mature tree of Populus tremula ‘Erecta’ were incubated on a Murashige and Skoog (MS) medium supplemented with 1.0 μM thidiazuron (TDZ). Induced shoots were then proliferated on medium of MS or Woody Plant Medium (WPM), or Driver and Kuniyuki Walnut (DKW) supplemented with varying levels of benzyladenine (BA). Overall, shoots grown on MS medium supplemented with 1.25–2.5 μM BA exhibited the highest frequency of shoot proliferation (>95%) and more than 60% of responding explants produced more than five shoots per explant. Shoot organogenesis was induced from both leaf and petiole explants incubated on WPM medium containing BA, or TDZ, or zeatin. Among the different cytokinins tested, zeatin induced the highest frequency (average 72.1%) of shoot organogenesis. None of explants survived on media containing no cytokinins within 6–8 weeks following culture. Overall, a higher frequency of shoot regeneration was obtained from petioles than from leaf explants. The highest frequency of regeneration was achieved when petioles were incubated on WPM containing 10–20 μM zeatin. Addition of naphthaleneacetic acid (NAA) did not have a significant effect on shoot regeneration in all treatments. Shoot organogenesis was directly induced from petiole explants without intervening callus. Regenerated shoots were easily rooted on all tested media supplemented with 0.5 μM NAA. Rooted plants were transferred to potting mix and grown in the greenhouse.  相似文献   

3.
The influence of cytokinin thidiazuron (TDZ) and auxin indole-3-acetic acid (IAA) on in vitro shoot organogenesis of fifteen Rhododendron genotypes was investigated and a protocol for high frequency adventitious shoot regeneration from leaf explants was developed. High genotypic variation was observed and regeneration frequencies ranged from 0 to 100 %. Genotype Ovation had the highest number of shoots (26.4 per explant) after 12 weeks on medium with 0.57 μM IAA and 1.20 μM TDZ, but only 65 % of explants regenerated. Catawbiense Grandiflorum had 17.7 shoots per explant and 75 % regeneration on medium with 5.70 μM IAA and 0.45 μM TDZ and Van Werden Poelman had 14.3 shoots per explant and 100 % regeneration on medium with 0 57 μM IAA and 0.45 μM TDZ.  相似文献   

4.
A procedure for multiple shoot formation from somatic embryo explants of Eastern redbud (Cercis canadensis L.) cultured on DKW medium containing benzyladenine (BA) and thidiazuron (TDZ) was developed. TDZ in combination with BA produced more shoots than either treatment alone. The highest number of shoots (3.3 to 3.4 shoots per explant) was obtained from partially desiccated and wounded explants treated with a combination of 5 or 10 M BA and 0.5 or 1.0 M TDZ for 20 days before being transferred to the same medium without TDZ. The number of shoots formed was increased from 1.5 to 3.2 shoots per explant by cutting through the cotyledonary node prior to culture. In addition, the frequency of explants forming shoots was increased by desiccation of somatic embryo explants to approximately 50% moisture and by using somatic embryos with two well formed cotyledons as explants.Abbreviations ABA abscisic acid - BA benzyladenine - CRD Completely randomized design - DKW Driver and Kuniyuki medium - LSD Least significant differences - TDZ thidiazuron  相似文献   

5.
Seabuckthorn (Hippophae rhamnoides) is a multipurpose small tree with unique berries of high nutritional and pharmaceutical values. A clonally propagated plant originating from a 20-year-old tree of H. r. rhamnoides × mongolica hybrid cultivar Julia and seedling offspring of this cultivar were investigated regarding induction of shoot organogenesis in leaf explants and in roots of intact seedlings, and induction of direct somatic embryogenesis in explants from shoot tissue. The highest percentage of leaf explants showing shoot organogenesis was achieved (juvenile explants, 65%; adult explants, 75%) when incubated in Murashige and Skoog (MS) medium supplemented with either 4.5 μM of the phenylurea cytokinin thidiazuron (TDZ) or 2.25 μM TDZ plus 2.2 μM 6-benzyladenine (BA), for juvenile and adult explants, respectively, both supplemented with 0.53 μM α-naphthaleneacetic acid (NAA). Juvenile explants developed on average 18 shoots per explant in the MS medium supplemented with 4.5 μM TDZ, a four fold increase over those incubated on the medium supplemented with 2.25 μM TDZ and 2.2 μM BA. Adult leaf explants grown on medium containing 2.25 μM TDZ and 2.2 μM BA medium produced 12 shoots per explant, while those grown on medium containing 4.5 μM TDZ produced 5 shoots per explant. Shoot organogenesis was observed in roots of intact seedlings pre-cultured on plain medium lacking nutrients (PM) or woody plant medium (WPM) salts and then grown on WPM salts supplemented with 4.4 μM BA, 0.29 μM gibberrelic acid (GA3), and 57.0 μM indoleacetic acid (IAA). The number of shoots formed on each seedling root system was ten fold higher when the pre-culture was in WPM medium indicating a promoting effect of mineral nutrients in the pre-culture medium. Somatic embryogenesis was induced in both juvenile and adult leaf explants in 65 and 78% of the explants, respectively, in MS-based medium supplemented with 2.0 μM N-(2-Chloro-4-pyridyl)-N 1-phenylurea (CPPU), 0.53 μM NAA and varying concentrations of BA. There was an interaction effect between MS salt strength and BA concentration. The most effective medium for inducing somatic embryogenesis in juvenile explants contained half strength MS salts and 2.2 μM BA and full strength MS salts and 13.2 μM BA for adult explants.  相似文献   

6.
Bigtooth maple (Acer grandidentatum) is a promising ornamental tree that is not widely used in managed landscapes. Tissue culture has not been used successfully to propagate this taxon. We cultured single- and double-node explants from greenhouse-grown, 2-y old seedlings of bigtooth maples, which are indigenous to New Mexico, Texas, and Utah, on Murashige–Skoog (MS), Linsmaier–Skoog (LS), Driver–Kuniyuki Walnut (DKW), and Woody Plant (WPM) tissue culture media. Media affected shoot proliferation (P = 0.0242) but the zone of explant origin (P = 0.7594) did not. After four 30-d subcultures, explants on DKW media and WPM media produced 3.6 and 3.5 shoots per explant, respectively. Sprouting rates were highest on DKW, making DKW the best overall media for shoot proliferation. Double-node microshoots were rooted in vitro on DKW containing indole acetic acid (IAA). Microshoots represented six genotypes from three locations within Texas and New Mexico. Rooting percentage increased up to 15% as IAA concentration increased (P = 0.0040). There was 100% survival of rooted microshoots in vented Phytatrays containing one perlite: one peat moss (v/v). We conclude that DKW can be used to proliferate microshoots, and IAA induces rooting in microshoots of bigtooth maple.  相似文献   

7.
The effects of culture media and cytokinin types on micropropagation of mature Crataegus aronia L. were investigated. Using single-axillary bud explants, the growth of cultures on MS, WPM, DKW and NRM containing 4.44 μM benzyladenine (BA) plus 0.05 μM indole-3-butyric acid (IBA), and on NRM containing thidiazuron, meta-Topolin (mT) or BA at 1.25, 2.5, 5.0 or 7.5 μM plus 0.05 μM IBA were compared. The culture medium had significant effects on shoot number and length. In comparison with MS, DKW and WPM, shoot production was greater on NRM (5.7 shoots per explant). Shoot production on MS, DKW and WPM (4.2, 4.2 and 4.1, respectively) were statistically similar to each other. Thidiazuron was detrimental to shoot formation and caused formation of rosette shoots and/or large callus to form on explants. In the presence of mT, only some of the explants developed into shoots. Benzyladenine was the only cytokinin that promoted both shoot proliferation and shoot elongation. Higher shoot numbers were obtained at 5.0 and 7.5 μM BA compared to lower concentrations of BA. Over 80% of microshoots rooted and rooted shoots were successfully acclimatized to ex vitro conditions.  相似文献   

8.
This report describes in vitro shoot induction and plant regeneration from mature nodal explants of Vitex trifolia L. on Murashige and Skoog (MS) medium fortified with benzylaminopurine (BAP), kinetin (KN), thidiazuron (TDZ), adenine (ADE), and 2-isopentenyladenine (2-iP) (0.25 – 10.0 μM). Multiple shoots differentiated directly without callus mediation within 3 weeks when explants were cultured on medium supplemented with cytokinins. The maximum number of shoots (9 shoots per explant) was developed on a medium supplemented with 5.0 μM BAP. Shoot cultures was established repeatedly subculturing the original nodal explant on the same medium. Rooting of shoots was achieved on half strength MS medium supplemented with 0.5 μM naphthaleneacetic acid (NAA). Rooted plantlets transferred to pots containing autoclaved soil and vermiculite mixture (1:1) showed 90 % survival when transferred to outdoor.  相似文献   

9.
Embryonal axis explants from 2-d-old in vitro germinated seeds were used to induce multiple shoot production. The combination of 4.44 μM BA and 1.59 μM NAA in MS medium triggered the initiation of adventitious shoot buds. The explants with shoot buds produced maximum number of shoots (10.6 per explant) in MS medium supplemented with 4.44 μM BA and 0.065 mM L-glutamine in three successive transfers. The elongated shoots were rooted on MS medium with 4.92 μM IBA. Rooted plants were transferred to soil with a survival rate of 65 %.  相似文献   

10.
In vitro regeneration from leaf, cotyledon and hypocotyl explants of six cultivars belonging to three species of Capsicum was achieved by direct organogenesis. The cultivar Umorok showed the best response while Meiteimorok, Haomorok, Mashingkha and Uchithi showed intermediate response and the cultivar Chiengpi was the least responsive. Leaf and cotyledon explants regenerated more shoots than hypocotyl explants and the maximum number of shoots were produced on Murashige and Skoog (1962) medium containing 8.8 μM 6-benzylaminopurine (BAP) with 11.4 μM indole-3-acetic acid (IAA). Elongation of shoot buds derived from different explants was achieved on medium containing 2.8 μM IAA and the elongated shoots were rooted on medium containing 2.8 or 5.7 μM IAA and 2.4 or 4.9 μM indole-3-butyric acid (IBA). Four-week old rooted plantlets were hardened and transplanted to the soil. The plantlets showed 90 % survival during transplantation.  相似文献   

11.
In the present study, in vitro regeneration system for a recalcitrant woody tree legume, Leucaena leucocephala (cvs. K-8, K-29, K-68 and K-850) from mature tree derived nodal explants as well as seedling derived cotyledonary node explants was developed. Best shoot initiation and elongation was found on full-strength Murashige and Skoog (MS) medium supplemented with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 100 mg dm−3 glutamine, 20.9 μM N 6-benzylamino-purine (BAP) and 5.37 μM 1-naphthalene acetic acid (NAA). Rooting was induced in half-strength MS medium containing 2 % (m/v) sucrose, 100 mg dm−3 myoinositol, 14.76 μM indole-3-butyric acid (IBA) and 0.23 μM kinetin. The cultivar K-29 gave the best response under in vitro conditions. Rooted plantlets were subjected to hardening and successfully transferred to greenhouse. Further, somatic embryogenesis from nodal explants of cv. K-29 via an intermittent callus phase was also established. Pronounced callusing was observed on full-strength MS medium containing 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 40.28 μM NAA and 12.24 μM BAP. These calli were transferred to induction medium and maximum number of globular shaped somatic embryos was achieved in full-strength MS medium fortified with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 15.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 5.0 μM BAP and 1.0 mM proline. Moreover, an increase in endogenous proline content up to 28th day of culture in induction medium was observed. These globular shaped somatic embryos matured in full-strength MS medium with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 10.0 μM BAP, 2.5 to 5.0 μM IBA and 0.5 mM spermidine.  相似文献   

12.
Cytokinins, donor plants and their time in vitro as well as basal media were investigated for their influence on shoot regenerative capacity of American elm (Ulmus americana L.) leaves. Leaves excised from six 2-year-old seedlings formed adventitious shoots when placed on Driver and Kuniyuki Walnut (DKW) medium supplemented with 7.5, 15 or 22.5 M of benzyladenine (BA) or thidiazuron (TDZ). Thidiazuron induced significantly higher regeneration percentages on elm leaves than BA, regardless of concentration used. Donor plant also affected the efficiency of shoot regeneration, with certain seedlings having 1.5 to 7 times more explants forming shoots as compared to other seedlings tested. By subculture 15, the average number of shoots per regenerating explant increased at least 3-fold for leaves on media with BA or TDZ for the one donor plant that survived continued subculturing. Leaf explants from donor plants with the highest regenerative capacity had a higher percentage of shoot formation on DKW than MS medium. Explants from productive donor plants should be placed on DKW medium supplemented with TDZ to improve shoot regeneration efficiency from American elm leaves.  相似文献   

13.
Conditions for induction of embryogenic nodules and subsequent somatic embryogenesis in the tropical hardwood Cedrela odorata are described. Embryo explants from ungerminated mature seeds were placed on Driver and Kuniyuki Walnut (DKW) medium using 0.8% w/v agar as the gelling agent, plus benzyladenine (BA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Various phytohormone combinations were tested, from which 5 μM BA + 50 μM 2,4-D were chosen as the standard regime based on a maximum frequency of embryogenic nodule occurrence of 20–25% on this medium. Nodules, when excised from the cotyledons and placed on growth-regulator-free medium, produced both plantlets and secondary embryogenic tissue. With extended culture on growth-regulator-free DKW medium, plantlets developed roots and could be transplanted into pots for further growth. The frequency of nodule initiation could be improved by either orienting the cotyledon explants with their lower (abaxial) surface in contact with the medium or imposing a pre-excision period of heat shock. The treatments together were additive. An optimum heat-shock temperature (47°C) and range of exposure times (8–12 h) were defined.  相似文献   

14.
Summary We describe a protocol, and several experiments that helped lead to its development, for sunflower regeneration. Important factors for sunflower regeneration were explant age, cytokinin type and concentration, basal medium, and explant source. We could not induce shoot regeneration from the explants derived from mature tissues including leaf, petiole, and stem. However, use of juvenile explants such as embryo meristem and primordial leaf tissues allowed routine regeneration of 17 different sunflower genotypes. High frequency of shoot regeneration was achieved with these explants taken from seedlings up to 5 d after germination. Explant age was less critical for embryo meristem explants than for primordial leaf tissues. Of the four basal media tested, MS and B5 media produced higher shoot-regeneration frequencies than did Anderson and woody plant media. The highest shoot-regeneration frequency was obtained with MS medium supplemented with 2 μM BA and without auxin. Addition of 1 μM naphthalene-acetic acid to the medium significantly reduced both the percentage of explants producing shoots and average number of shoots per explant. Regenerated shoots were grown to maturity in a greenhouse.  相似文献   

15.
Attempts were made to study the effect of thidiazuron (TDZ) on adventitious shoot induction and plant development in Paulownia tomentosa explants derived from mature trees. Media with different concentrations of TDZ in combination with an auxin were used to induce adventitious shoot-buds in two explant types: basal leaf halves with the petiole attached (leaf explant) and intact petioles. Optimal shoot regeneration was obtained in leaf explants cultured on induction medium containing TDZ (22.7 or 27.3 μM) in combination with 2.9 μM indole-3-acetic acid (IAA) for 2 weeks, and subsequent culture in TDZ-free shoot development medium including 0.44 μM BA for a further 4-week period. The addition of IAA to the TDZ induction medium enhanced the shoot-forming capacity of explants. The caulogenic response varied significantly with the position of the explant along the shoot axis. The highest regeneration potential (85–87%) and shoot number (up to 17.6 shoots/explant) were obtained in leaf explants harvested from the most apical node exhibiting unfolded leaves (node 1). An analogous trend was also observed in intact petiole explants, although shoot regeneration ability was considerably lower, with values ranging from 15% for petioles isolated from node 1 to 5% for those of nodes 2 and 3. Shoot formation capacity was influenced by the genotype, with regeneration frequencies ranging from 50% to 70%. It was possible to root elongated shoots (20 mm) in basal medium without growth regulators; however, rooting frequency was significantly increased up to 90% by a 7-day treatment with 0.5 μM indole-3-butyric acid, regardless of the previous culture period in shoot development medium (4 or 8 weeks). Shoot quality of rooted plantlets was improved not only by IBA treatment but also by using material derived from the 4-week culture period. Regenerated plantlets were successfully acclimatized in the greenhouse 8 weeks after transplanting.  相似文献   

16.
Summary A procedure for the regeneration of cacao (Theobroma cacao) plants from staminode explants via somatic embryogenesis was developed. Rapidly growing calli were induced by culturing staminode explants on a DKW salts-based primary callus growth (PCG) medium supplemented with 20 g glucose per L, 9 μM 2,4-D, and thidiazuron (TDZ) at various concentrations. Calli were subcultured onto a WPM salts-based secondary callus growth medium supplemented with 20 g glucose per L, 9 μM 2,4-D, and 1.4 nM kinetin. Somatic embryos were formed from embryogenic calli following transfer to a hormone-free DKW salts-based embryo development medium containing sucrose. The concentration of TDZ used in PCG medium significantly affected the rate of callus growth, the frequency of embryogenesis, and the number of somatic embryos produced from each responsive explant. A TDZ concentration of 22.7 nM was found to be the optimal concentration for effective induction of somatic embryos from various cacao genotypes. Using this procedure, we recovered somatic embryos from all 19 tested cacao genotypes, representing three major genetic group types. However, among these genotypes, a wide range of variation was observed in both the frequency of embryogenesis, which ranged from 1 to 100%, and the average number of somatic embryos produced from each responsive explant, which ranged from 2 to 46. Two types of somatic embryos were identified on the basis of their visual appearance and growth behavior. A large number of cacao plants have been regenerated from somatic embryos and established in soil in a greenhouse. Plants showed morphological and growth characteristics similar to those of seed-derived plants. The described procedure may allow for the practical use of somatic embryogenesis for clonal propagation of elite cacao clones and other applications that require the production of a large number of plants from limited source materials.  相似文献   

17.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

18.
Multiple shoot formation from cotyledonary node segments of Eastern redbud   总被引:4,自引:0,他引:4  
A procedure for multiple shoot formation from cotyledonary node explants of Eastern redbud (Cercis canadensis L.) cultured on DKW medium containing benzyladenine (BA) and thidiazuron (TDZ) was developed. Explants on medium with TDZ in combination with BA produced higher numbers of shoots than with either cytokinin alone. The highest number of shoots (7.8 to 9.8 shoots per explant) was obtained when explants from 4 to 10 day-old seedlings were treated with a combination of 10 or 15 μM BA and 0.5 or 1.0 μM TDZ for 20 days before being transferred to the same medium without TDZ. The number of shoots formed was increased from 5.8 to 7.2 shoots per explant by cutting through the cotyledonary node prior to culture. Histological studies indicated that the shoots were formed from actively dividing cells located at the axillary bud region. Shoots formed roots in half strength woody plant medium (WPM) supplemented with 10 to 200 μM indole-3-butyric acid (IBA) cultured for 15 days prior to transfer to greenhouse medium.  相似文献   

19.
An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature leaf explants of Momordica charantia, a very important vegetable and medicinal plant. Calluses were induced from immature leaf explants excised from in vitro (15-day-old seedlings) mature leaf explants of vivo plants (45 days old). The explants were grown on Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g l−1 sucrose, 2.2 g l−1 Gelrite, and 7.7 μM naphthalene acetic acid (NAA) with 2.2 μM thidiazuron (TDZ). Regeneration of adventitious shoots from callus (30–40 shoots per explant) was achieved on MS medium containing 5.5 μM TDZ, 2.2 μM NAA, and 3.3 μM silver nitrate (AgNO3). The shoots (1.0 cm length) were excised from callus and elongated in MS medium fortified with 3.5 μM gibberellic acid (GA3). The elongated shoots were rooted in MS medium supplemented with 4.0 μM indole 3-butyric acid (IBA). Rooted plants were acclimatized in the greenhouse and subsequently established in soil with a survival rate of 90%. This protocol yielded an average of 40 plants per leaf explant with a culture period of 98 days.  相似文献   

20.
Present study provides an easy and efficient protocol for large scale clonal propagation of Coleus forskohlii, a threatened medicinal plant of commercial importance. Basal leaf lamina excised from upper three nodes of shoot was used as explant and its size, position, orientation and season of collection were initially optimized to select the most responsive explant condition. Enhanced shoot production and proliferation has been achieved on medium containing 2 μM BA + 0.1 μM NAA wherein, a highest number of 35 shoots/explant were produced. The regenerated shoots of varied length (3–5 cm) were transferred to root induction medium comprising of IBA, NAA and IAA (1–5 μM) in half-strength MS medium to determine the most suitable shoot length for proper root induction. Rooted plantlets were acclimatized in field conditions after proper hardening. Histological analysis was also carried out to confirm the nature of origin of shoot buds from leaf explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号