共查询到20条相似文献,搜索用时 15 毫秒
1.
Bayot A Basse N Lee I Gareil M Pirotte B Bulteau AL Friguet B Reboud-Ravaux M 《Biochimie》2008,90(2):260-269
Cellular protein homeostasis results from the combination of protein biogenesis processes and protein quality control mechanisms, which contribute to the functional state of cells under normal and stress conditions. Proteolysis constitutes the final step by which short-lived, misfolded and damaged intracellular proteins are eliminated. Protein turnover and oxidatively modified protein degradation are mainly achieved by the proteasome in the cytosol and nucleus of eukaryotic cells while several ATP-dependent proteases including the matrix protease Lon take part in the mitochondrial protein degradation. Moreover, Lon protease seems to play a major role in the elimination of oxidatively modified proteins in the mitochondrial matrix. Specific inhibitors are commonly used to assess cellular functions of proteolytic systems as well as to identify their protein substrates. Here, we present and discuss known proteasome and Lon protease inhibitors. To date, very few inhibitors of Lon have been described and no specific inhibitors of this protease are available. The current knowledge on both catalytic mechanisms and inhibitors of these two proteases is first described and attempts to define specific non-peptidic inhibitors of the human Lon protease are presented. 相似文献
2.
The physiological role of mitochondrial aldehyde dehydrogenase (ALD5) was investigated by analysis of the ald5 mutant (AKD321) in Saccharomyces cerevisiae. K(+)-activated ALDH activity of the ald5 mutant was about 80% of the wild-type in the mitochondrial fraction, while the respiratory activity of the ald5 mutant was greatly reduced. Cytochrome content was also reduced in the ald5 mutant. Enzymatic analysis revealed that the alcohol dehydrogenase activity of the ald5 mutant was higher than that of the wild-type, while glycerol 3-phosphate dehydrogenase activity was the same in the two strains. Ethanol as a carbon source or addition of 1 M NaCl with glucose as the carbon source in the growth medium increased beta-galactosidase activity from an ALD5-lacZ fusion. Overexpression of another mitochondrial ALDH gene (ALD7) had no effect on increasing respiratory function of the ald5 mutant, but showed improved growth on ethanol. These observations show that mitochondrial ALD5 plays a role in regulation or biosynthesis of electron transport chain components. 相似文献
3.
4.
The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1 下载免费PDF全文
Laura C. D. Pomatto Rachel Raynes Kelvin J. A. Davies 《Biological reviews of the Cambridge Philosophical Society》2017,92(2):739-753
Peroxisomes are ubiquitous eukaryotic organelles with the primary role of breaking down very long‐ and branched‐chain fatty acids for subsequent β‐oxidation in the mitochondrion. Like mitochondria, peroxisomes are major sites for oxygen utilization and potential contributors to cellular oxidative stress. The accumulation of oxidatively damaged proteins, which often develop into inclusion bodies (of oxidized, aggregated, and cross‐linked proteins) within both mitochondria and peroxisomes, results in loss of organelle function that may contribute to the aging process. Both organelles possess an isoform of the Lon protease that is responsible for degrading proteins damaged by oxidation. While the importance of mitochondrial Lon (LonP1) in relation to oxidative stress and aging has been established, little is known regarding the role of LonP2 and aging‐related changes in the peroxisome. Recently, peroxisome dysfunction has been associated with aging‐related diseases indicating that peroxisome maintenance is a critical component of ‘healthy aging’. Although mitochondria and peroxisomes are both needed for fatty acid metabolism, little work has focused on understanding the relationship between these two organelles including how age‐dependent changes in one organelle may be detrimental for the other. Herein, we summarize findings that establish proteolytic degradation of damaged proteins by the Lon protease as a vital mechanism to maintain protein homeostasis within the peroxisome. Due to the metabolic coordination between peroxisomes and mitochondria, understanding the role of Lon in the aging peroxisome may help to elucidate cellular causes for both peroxisome and mitochondrial dysfunction. 相似文献
5.
Javier García‐Nafría Gabriela Ondrovičová Elena Blagova Vladimir M. Levdikov Jacob A. Bauer Carolyn K. Suzuki Eva Kutejová Anthony J. Wilkinson Keith S. Wilson 《Protein science : a publication of the Protein Society》2010,19(5):987-999
ATP‐dependent proteases are crucial for cellular homeostasis. By degrading short‐lived regulatory proteins, they play an important role in the control of many cellular pathways and, through the degradation of abnormally misfolded proteins, protect the cell from a buildup of aggregates. Disruption or disregulation of mammalian mitochondrial Lon protease leads to severe changes in the cell, linked with carcinogenesis, apoptosis, and necrosis. Here we present the structure of the proteolytic domain of human mitochondrial Lon at 2 Å resolution. The fold resembles those of the three previously determined Lon proteolytic domains from Escherichia coli, Methanococcus jannaschii, and Archaeoglobus fulgidus. There are six protomers in the asymmetric unit, four arranged as two dimers. The intersubunit interactions within the two dimers are similar to those between adjacent subunits of the hexameric ring of E. coli Lon, suggesting that the human Lon proteolytic domain also forms hexamers. The active site contains a 310 helix attached to the N‐terminal end of α‐helix 2, which leads to the insertion of Asp852 into the active site, as seen in M. jannaschii. Structural considerations make it likely that this conformation is proteolytically inactive. When comparing the intersubunit interactions of human with those of E. coli Lon taken with biochemical data leads us to propose a mechanism relating the formation of Lon oligomers with a conformational shift in the active site region coupled to a movement of a loop in the oligomer interface, converting the proteolytically inactive form seen here to the active one in the E. coli hexamer. 相似文献
6.
Banaji M 《Journal of theoretical biology》2006,243(4):501-516
In this paper, a simplified, generic model of mitochondrial metabolism is explored. In particular the following question is addressed: To what extent are phenomena observed in experiments and simulations of mitochondrial metabolism generic, in the sense that they must occur in all models with this basic structure? Of particular interest are the electron transport chain and oxidative phosphorylation, and how flux through the system and the redox states of intermediates respond to physiologically important stimuli. These stimuli include changes in substrate supply (NADH/FADH(2)), in oxygenation, and in membrane proton gradient/ATP demand. Analytical techniques are used to show that certain experimentally observed effects must occur in the generic model. These include the responses of both flux and redox states to changed substrate and oxygen concentrations. At the same time other effects, such as the responses of redox states to changes in proton gradient, are dependent on the details of the model, and are not common to every model with the same basic structure. The phenomenon of saturation in response to large inputs is also discussed. 相似文献
7.
Shanshan Li Kan-Yen Hsieh Shih-Chieh Su Grigore D. Pintilie Kaiming Zhang Chung-I Chang 《The Journal of biological chemistry》2021,297(4)
The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding. 相似文献
8.
Generation of reactive oxygen species by the mitochondrial electron transport chain 总被引:25,自引:0,他引:25
Generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain (ETC), which is composed of four multiprotein complexes named complex I-IV, is believed to be important in the aging process and in the pathogenesis of neurodegenerative diseases such as Parkinson's disease. Previous studies have identified the ubiquinone of complex III and an unknown component of complex I as the major sites of ROS generation. Here we show that the physiologically relevant ROS generation supported by the complex II substrate succinate occurs at the flavin mononucleotide group (FMN) of complex I through reversed electron transfer, not at the ubiquinone of complex III as commonly believed. Indirect evidence indicates that the unknown ROS-generating site within complex I is also likely to be the FMN group. It is therefore suggested that the major physiologically and pathologically relevant ROS-generating site in mitochondria is limited to the FMN group of complex I. These new insights clarify an elusive target for intervening mitochondrial ROS-related processes or diseases. 相似文献
9.
Qun Chen Guotian Yin Sarah Stewart Edward J. Lesnefsky 《Biochemical and biophysical research communications》2010,397(4):656-316
Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 °C. Amobarbital (2.5 mM) or azide (5 mM) was used to block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase. 相似文献
10.
The Escherichia coli ATP-dependent protease Lon degrades ribosomal S2 protein in the presence of inorganic polyphosphate (polyP). In this study, the process of the degradation was investigated in detail. During the degradation, 68 peptides with various sizes (4-29 residues) were produced in a processive fashion. Cleavage occurred at 45 sites, whose P1 and P3 positions were dominantly occupied by hydrophobic residues. These cleavage sites were located preferentially at the regions with rigid secondary structures and the P1 residues of the major cleavage sites appeared to be concealed from the surface of the substrate molecule. Furthermore, polyP changed not only the substrate preference but also the oligomeric structure of the enzyme. 相似文献
11.
Ju C Yoon KN Oh YK Kim HC Shin CY Ryu JR Ko KH Kim WK 《Journal of neurochemistry》2000,74(5):1989-1998
Previously we reported that immunostimulated astrocytes were highly vulnerable to glucose deprivation. The augmented death was mimicked by the peroxynitrite (ONOO )-producing reagent 3-morpholinosydnonimine (SIN-1). Here we show that glucose deprivation and ONOO- synergistically deplete intracellular reduced glutathione (GSH) and augment the death of astrocytes via formation of cyclosporin A-sensitive mitochondrial permeability transition (MPT) pore. Astrocytic GSH levels were only slightly decreased by glucose deprivation or SIN-1 (200 microM) alone. In contrast, a rapid and large depletion of GSH was observed in glucose-deprived/ SIN-1-treated astrocytes. The depletion of GSH occurred before a significant release of lactate dehydrogenase (a marker of cell death). Superoxide dismutase and ONOO-scavengers completely blocked the augmented death, indicating that the reaction of nitric oxide with superoxide to form ONOO was implicated. Furthermore, nitrotyrosine immunoreactivity (a marker of ONOO-) was markedly enhanced in glucose-deprived/SIN-1 -treated astrocytes. Mitochondrial transmembrane potential (MTP) was synergistically decreased in glucose-deprived/SIN-1-treated astrocytes. The glutathione synthase inhibitor L-buthionine-(S,R)-sulfoximine markedly decreased the MTP and increased lactate dehydrogenase (LDH) releases in SIN-1-treated astrocytes. Cyclosporin A, an MPT pore blocker, completely prevented the MTP depolarization as well as the enhanced LDH releases in glucose-deprived/SIN-1-treated astrocytes. 相似文献
12.
Local anesthetics and alcohols were found to inhibit mitochondrial electron transport at several points along the chain. The anesthetics employed were the tertiary amines procaine, tetracaine, dibucaine, and chlorpromazine, and the alcohols were n-butanol, n-pentanol, n-hexanol, and benzyl alcohol. Uncoupled sonic submitochondrial particles from beef heart and rat liver were studied. We report the following: (1) All of the anesthetics were found to inhibit each of the segments of the electron transport chain assayed; these included cytochrome c oxidase, durohydroquinone oxidase, succinate oxidase, NADH oxidase, succinate dehydrogenase, succinate-cytochrome c oxidoreductase, and NADH-cytochrome c oxidoreductase. (2) NADH oxidase and NADH-cytochrome c oxidoreductase required the lowest concentrations of anesthetic for inhibition, and cytochrome c oxidase required the highest concentrations. (3) We conclude that there are several points along the chain at which inhibition occurs, the most sensitive being in the region of Complex I (NADH dehydrogenase). (4) Beef heart submitochondrial particles are less sensitive to inhibition than are rat liver particles. (5) Low concentrations of several of the anesthetics gave enhancement of electron transport activity, whereas higher concentrations of the same agents caused inhibition. (6) The concentrations of anesthetics (alcohol and tertiary amine) which gave 50% inhibition of NADH oxidase were lower than the reported concentrations required for blockage of frog sciatic nerve. 相似文献
13.
Christian Cortés-Rojo Elizabeth Calderón-Cortés Mónica Clemente-Guerrero Mirella Estrada-Villagómez Salvador Manzo-Avalos Ricardo Mejía-Zepeda Istvan Boldogh Alfredo Saavedra-Molina 《Journal of bioenergetics and biomembranes》2009,41(1):15-28
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain
(ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we
investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe2+ treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive)
fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the
ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation
impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level
of the QO site of complex III. 相似文献
14.
Proteins interacting with mitochondrial ATP‐dependent Lon protease (MAP1) in Magnaporthe oryzae are involved in rice blast disease 下载免费PDF全文
Xiao Cui Yi Wei Yu‐Han Wang Jian Li Fuk‐Ling Wong Ya‐Jie Zheng Hai Yan Shao‐Shuai Liu Jin‐Liang Liu Bao‐Lei Jia Shi‐Hong Zhang 《Molecular Plant Pathology》2015,16(8):847-859
The ATP‐dependent Lon protease is involved in many physiological processes. In bacteria, Lon regulates pathogenesis and, in yeast, Lon protects mitochondia from oxidative damage. However, little is known about Lon in fungal phytopathogens. MAP1, a homologue of Lon in Magnaporthe oryzae, was recently identified to be important for stress resistance and pathogenesis. Here, we focus on a novel pathogenic pathway mediated by MAP1. Based on an interaction system between rice and a tandem affinity purification (TAP)‐tagged MAP1 complementation strain, we identified 23 novel fungal proteins from infected leaves using a TAP approach with mass spectrometry, and confirmed that 14 of these proteins physically interact with MAP1 in vivo. Among these 14 proteins, 11 candidates, presumably localized to the mitochondria, were biochemically determined to be substrates of MAP1 hydrolysis. Deletion mutants were created and functionally analysed to further confirm the involvement of these proteins in pathogenesis. The results indicated that all mutants showed reduced conidiation and sensitivity to hydrogen peroxide. Appressorial formations were not affected, although conidia from certain mutants were morphologically altered. In addition, virulence was reduced in four mutants, enhanced (with lesions forming earlier) in two mutants and remained unchanged in one mutant. Together with the known virulence‐related proteins alternative oxidase and enoyl‐CoA hydratase, we propose that most of the Lon‐interacting proteins are involved in the pathogenic regulation pathway mediated by MAP1 in M. oryzae. Perturbation of this pathway may represent an effective approach for the inhibition of rice blast disease. 相似文献
15.
电子传递链亦称呼吸链,由位于线粒体内膜的I、II、III、IV 4种复合物组成,负责电子传递和产生质子梯度。电子主要从复合物I进入电子传递链,经复合物III传递至复合物IV。电子传递系统的组装是一个十分复杂的过程,目前已知主要有约69个结构亚基以及至少16个组装因子参与了人类复合物I、III、IV的组装,这些蛋白质由核基因组与线粒体基因组共同编码。对线粒体电子传递系统的蛋白质组成及其结构已研究得较为清楚,但对它们的组装了解得还比较初步。许多人类线粒体疾病是由于电子传递系统的功能障碍引起的,其中又有许多是由于该系统中一个或多个部件的错误组装引起的。研究这些缺陷不仅能够加深对线粒体疾病发病机理的了解,也有助于揭示线粒体功能的调控机制。将着重对电子传递系统复合物的组装及其与人类疾病关系的研究进展进行综述。 相似文献
16.
Luis A. Gómez Juan D. Chavez Tory M. Hagen 《Archives of biochemistry and biophysics》2009,490(1):30-35
Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed “supercomplexes”. Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p < 0.05, n = 4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age. 相似文献
17.
The processes that control aging remain poorly understood. We have exploited mutants in the nematode, Caenorhabditis elegans, that compromise mitochondrial function and scavenging of reactive oxygen species (ROS) to understand their relation to lifespan. We discovered unanticipated roles and interactions of the mitochondrial superoxide dismutases (mtSODs): SOD‐2 and SOD‐3. Both SODs localize to mitochondrial supercomplex I:III:IV. Loss of SOD‐2 specifically (i) decreases the activities of complexes I and II, complexes III and IV remain normal; (ii) increases the lifespan of animals with a complex I defect, but not the lifespan of animals with a complex II defect, and kills an animal with a complex III defect; (iii) induces a presumed pro‐inflammatory response. Knockdown of a molecule that may be a pro‐inflammatory mediator very markedly extends lifespan and health of certain mitochondrial mutants. The relationship between the electron transport chain, ROS, and lifespan is complex, and defects in mitochondrial function have specific interactions with ROS scavenging mechanisms. We conclude that mtSODs are embedded within the supercomplex I:III:IV and stabilize or locally protect it from reactive oxygen species (ROS) damage. The results call for a change in the usual paradigm for the interaction of electron transport chain function, ROS release, scavenging, and compensatory responses. 相似文献
18.
Jie Yang Albert S. Song R. Luke Wiseman Gabriel C. Lander 《The Journal of biological chemistry》2022,298(3)
Lon protease is a conserved ATP-dependent serine protease composed of an AAA+ domain that mechanically unfolds substrates and a serine protease domain that degrades these unfolded substrates. In yeast, dysregulation of Lon protease (PIM1) attenuates lifespan and leads to gross mitochondrial morphological perturbations. Although structures of the bacterial and human Lon protease reveal a hexameric assembly, yeast PIM1 was speculated to form a heptameric assembly and is uniquely characterized by a ∼50-residue insertion between the ATPase and protease domains. To further understand the yeast-specific properties of PIM1, we determined a high-resolution cryo-electron microscopy structure of PIM1 in a substrate-translocating state. Here, we reveal that PIM1 forms a hexamer, conserved with that of bacterial and human Lon proteases, wherein the ATPase domains form a canonical closed spiral that enables pore loop residues to translocate substrates to the protease chamber. In the substrate-translocating state, PIM1 protease domains form a planar protease chamber in an active conformation and are uniquely characterized by a ∼15-residue C-terminal extension. These additional C-terminal residues form an α-helix located along the base of the protease domain. Finally, we did not observe density for the yeast-specific insertion between the ATPase and protease domains, likely due to high conformational flexibility. Biochemical studies to investigate the insertion using constructs that truncated or replaced the insertion with a glycine-serine linker suggest that the yeast-specific insertion is dispensable for PIM1’s enzymatic function. Altogether, our structural and biochemical studies highlight unique components of PIM1 machinery and demonstrate evolutionary conservation of Lon protease function. 相似文献
19.
Chauhan A Gu F Essa MM Wegiel J Kaur K Brown WT Chauhan V 《Journal of neurochemistry》2011,117(2):209-220
Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4-10 years) and Group B (adults, ages 14-39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p<0.05), of complex I in the frontal cortex (p<0.05), and of complexes II (p<0.01), III (p<0.01), and V (p<0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood. 相似文献
20.
In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given
that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would
exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs.
Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly
than the wild-type under anaerobiosis. Aerobic induction of the Clp family of ATP-dependent proteases could explain these
results, but direct quantitation of Clp protein established that its level was not affected by Lon deficiency and overexpression
of Clp did not rescue the cells under anaerobic conditions. We conclude that the Lon protease supports survival during anaerobic
carbon starvation by a mechanism which does not depend on Clp.
Shen Luo and Megan McNeill contributed equally to this research. 相似文献