首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Temperature controlled differentially pumped environmental chambers now allow more routine examination of wet specimens in the electron microscope. A sensitive test of their efficiency is the ability to provide high resolution electron diffraction patterns from wet, unfixed protein microcrystals. Fortunately, wet specimens can be prepared with only a few tens of nanometers thickness of remaining water, so extraneous electron scattering by liquid water can be kept to a minimum. It still remains to be determined whether microprobe analysis (X-ray or electron energy-loss spectroscopy) using wet specimens gives better element localization in cells than the current freezing methods. More extensive comparisons are also required of the ultrastructural preservation and visibility of macromolecules immersed in a thin layer of water vs immersion in a thin layer of amorphous ice. However, the recent introduction of commercial forms of the necessary equipment now make these comparisons more feasible.  相似文献   

2.
Temperature controlled differentially pumped environmental chambers now allow more routine examination of wet specimens in the electron microscope. A sensitive test of their efficiency is the ability to provide high resolution electron diffraction patterns from wet, unfixed protein microcrystals. Fortunately, wet specimens can be prepared with only a few tens of nanometers thickness of remaining water, so extraneous electron scattering by liquid water can be kept to a minimum. It still remains to be determined whether microprobe analysis (X-ray or electron energy-loss spectroscopy) using wet specimens gives better element localization in cells than the current freezing methods. More extensive comparisons are also required of the ultrastructural preservation and visibility of macromolecules immersed in a thin layer of water vs immersion in a thin layer of amorphous ice. However, the recent introduction of commercial forms of the necessary equipment now make these comparisons more feasible.  相似文献   

3.
4.

Background

Since the introduction of what became today's standard for cryo-embedding of biological macromolecules at native conditions more than 30 years ago, techniques and equipment have been drastically improved and the structure of biomolecules can now be studied at near atomic resolution by cryo-electron microscopy (cryo-EM) while capturing multiple dynamic states. Here we review the recent progress in cryo-EM for structural studies of dynamic biological macromolecules.

Scope of review

We provide an overview of the cryo-EM method and introduce contemporary studies to investigate biomolecular structure and dynamics, including examples from the recent literature.

Major conclusions

Cryo-EM is a powerful tool for the investigation of biological macromolecular structures including analysis of their dynamics by using advanced image-processing algorithms. The method has become even more widely applicable with present-day single particle analysis and electron tomography.

General significance

The cryo-EM method can be used to determine the three-dimensional structure of biomacromolecules in near native condition at close to atomic resolution, and has the potential to reveal conformations of dynamic molecular complexes. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.  相似文献   

5.

Background  

Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods.  相似文献   

6.
Biological membrane vesicles are analysed in terms of size and size distribution using gel filtration on Sephacryl S-1000, electron microscopy and quasi-elastic light scattering. The agreement between the three methods is satisfactory particularly for homogeneous dispersions. Gel filtration on Sephacryl S-1000 is a quick and convenient method for the routine size analysis of membrane vesicles up to a diameter of about 250 nm.  相似文献   

7.
生物元件是合成生物学中的三大基本要素之一,是合成生物学的基石。现阶段,生物元件的挖掘、鉴定和改造仍然是合成生物学领域的重要研究方向之一。合成生物学与基因工程和代谢工程最显著的差别在于能够将大量的生物元件进行快速、随意的组装,而实现这一目标的前提是将生物元件标准化。目前,已经有大量基因组被解析,通过这些基因组数据库的注释与功能验证,并借助于各种生物信息学软件预测启动子、终止子、操纵了、转录因子和转录因子结合位点、核糖体结合位点以及蛋白质编码区等部件,为合成生物学提供丰富的生物元件信息资源。随着元基因组技术的兴起,大量未培养微生物中的基因和基因簇信息被解析,使得我们可以从占自然界中实际存在微生物总数99%的未知微生物中挖掘更多的生物元件。另外,生物元件可以从自然界分离出来,也可以对天然生物元件进行修饰、重组和改造后得到新的元件。酵母是异源蛋白表达的通用宿主和生物基产品生产的细胞工厂,但其本身可用的启动子非常有限,近年来各国学者在酵母启动子改造和文库构建方面做了很多工作,该文也将概述酵母启动子改造和在合成生物生物学研究领域中的应用方面的研究进展。  相似文献   

8.
Protein modification and its biological role   总被引:3,自引:0,他引:3  
The modifications present on a polypeptide play an important role in determining its eventual fate. Modifications, particularly proteolysis, are important in the generation of biological activity. Modifications are used to "target" particular polypeptides to specific cellular locations. Protein modification also plays a role in determining the rate of polypeptide degradation. Cells have developed elaborate systems for the modification of their proteins because these modifications serve important biological functions.  相似文献   

9.
The immunogold method is widely used to localize, identify, and distinguish cellular antigens. There are, however, some pitfalls that can lead to nonspecific binding, particularly in cytoskeletal studies with gold probes prepared from small gold particles. We present a list of suggestions for minimizing nonspecific binding, with particular attention to two problems identified in this study. First, we find that the method used to prepare the colloidal gold particles affects the degree of nonspecific binding. Second, the standard BSA-stabilized small gold probes evidently possess exposed regions that bind to the proteins of cytoskeletal preparations. This was investigated in whole-mount cytoskeletal preparations of cultured cells by use of light microscopy, transmission electron microscopy, and photoelectron microscopy of silver-enhanced specimens. Gold probes were made from approximately 5-nm particles generated by reduction of HAuCl4 with three different reducing agents: white phosphorus, sodium borohydride, and citrate-tannic acid. All three preparations stabilized in the conventional way showed significant levels of nonspecific binding, which was highest with citrate-tannic acid. This problem was largely solved with all three types of probes by including fish gelatin in the probe buffer, by substituting fish gelatin for the BSA stabilizer used to prepare the probes, or by pre-adsorption methods. Application of these techniques resulted in clear immunogold labeling patterns with minimal nonspecific background.  相似文献   

10.
  1. Download : Download high-res image (235KB)
  2. Download : Download full-size image
  相似文献   

11.
This work was devoted to investigation or repair regulation by biological factors: viruses and interferon. DNA damage induced by gamma- and UV-irradiation, ethyleneimine and 4-nitro-quinoline-1-oxide (4-NQO) were studied, by sedimentation of lysed cells through alkaline sucrose gradients, by hydroxylapatite column chromatography and by the chromosomal aberration test. The reproducible vaccinia virus resulted in simulation repair activity of chick embryo cells after treatment with 4-NQO. Interferon, added after gamma- and UV-irradiation, decreased the chromosomal aberration level, stabilized it after ethyleneimine treatment and also stimulated the ability of cells to rejoin DNA breaks induced by 4-NQO. The cause of this phenomenon is discussed.  相似文献   

12.
13.
14.
Cellular events are accomplished by the coordinated interactions of cellular components within the three-dimensional context of a cell. Simultaneous observation of multiple components in three dimensions can be essential for understanding such interactions. Toward this end, we have developed a computerized microscope workstation capable of recording three-dimensional images of multiple cellular components in fixed and living cells. All aspects of microscope control, data collection, image processing and analysis can be performed on the one workstation. In this report, we describe the components and capabilities of this integrated system. In addition, we discuss some general problems of multiple-wavelength, three-dimensional imaging and our application of this technology to the analysis of chromosome organization in Drosophila melanogaster. Three-dimensional imaging of fixed embryos stained by indirect immunofluorescence has revealed the structural organization of chromosomes, microtubules, and the nuclear lamins. Imaging of living embryos injected with fluorescently labelled proteins has confirmed and extended these results by allowing the study of these structures throughout the cell cycle. The combination of the molecular specificity of fluorescence microscopy and the three-dimensional structural information obtained by our workstation has provided novel insights into the dynamic aspects of chromosome behavior during the cell cycle. We believe this system has many important applications in the study of the molecular basis of cellular events.  相似文献   

15.
16.
Surface modification methods can optimise the biocompatibility or the specificity of biointeraction of a biosensor or medical device. With only the surface modified, the manufacture and implantation protocol remain unchanged. This review article summarises some of the chemical, surface analytical and biological challenges associated with surface modification of biosensors and biomedical devices.  相似文献   

17.
18.
19.
20.
Lifetime reproductive output (LRO) determines per-generation growth rates, establishes criteria for population growth or decline, and is an important component of fitness. Empirical measurements of LRO reveal high variance among individuals. This variance may result from genuine heterogeneity in individual properties, or from individual stochasticity, the outcome of probabilistic demographic events during the life cycle. To evaluate the extent of individual stochasticity requires the calculation of the statistics of LRO from a demographic model. Mean LRO is routinely calculated (as the net reproductive rate), but the calculation of variances has only recently received attention. Here, we present a complete, exact, analytical, closed-form solution for all the moments of LRO, for age- and stage-classified populations. Previous studies have relied on simulation, iterative solutions, or closed-form analytical solutions that capture only part of the sources of variance. We also present the sensitivity and elasticity of all of the statistics of LRO to parameters defining survival, stage transitions, and (st)age-specific fertility. Selection can operate on variance in LRO only if the variance results from genetic heterogeneity. The potential opportunity for selection is quantified by Crow’s index \(\mathcal {I}\), the ratio of the variance to the square of the mean. But variance due to individual stochasticity is only an apparent opportunity for selection. In a comparison of a range of age-classified models for human populations, we find that proportional increases in mortality have very small effects on the mean and variance of LRO, but large positive effects on \(\mathcal {I}\). Proportional increases in fertility increase both the mean and variance of LRO, but reduce \(\mathcal {I}\). For a size-classified tree population, the elasticity of both mean and variance of LRO to stage-specific mortality are negative; the elasticities to stage-specific fertility are positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号