首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pore formation activity of Cry1Ab toxin is analyzed in an improved membrane preparation from apical microvilli structures of Manduca sexta midgut epithelium cells (MEC). A novel methodology is described to isolate MEC and brush border membrane vesicles (BBMV) from purified microvilli structures. The specific enrichment of apical membrane enzyme markers aminopeptidase (APN) and alkaline phosphatase (APh) were 35- and 22-fold, respectively, as compared to the whole midgut cell homogenate. Ligand-blot and Western-blot experiments showed that Cry1A specific receptors were also enriched. The pore formation activity of Cry1Ab toxin was fourfold higher in the microvilli membrane fraction that showed low intrinsic K+ channels and higher APN and APh activities than in the basal-lateral membrane fraction harboring high intrinsic K+ channels. These data suggest that basal-lateral membrane was separated from apical membrane.This procedure should allow more precise studies of the interaction of Cry toxins with their target membranes, avoiding unspecific interaction with other cellular membranes, as well as the study of the pore formation activity induced by Cry toxins in the absence of endogenous channels from M. sexta midgut cells.  相似文献   

2.
Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with (125)I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ja bound to a common binding site that was not shared by the other toxins tested. Reciprocal competition experiments with Cry1Ab, Cry1Ac, and Cry1Ja showed that these toxins do not bind to any additional binding sites. In the resistant strain, binding of (125)I-Cry1Ac was not significantly affected; however, (125)I-Cry1Ab did not bind to the BBMV. This result, along with previous data from this strain, shows that the resistance fits the "mode 1" pattern of resistance described previously in Plutella xylostella, Plodia interpunctella, and Heliothis virescens.  相似文献   

3.
The receptor binding step in the molecular mode of action of five delta-endotoxins (Cry1Ab, Cry1Ac, Cry1C, Cry2A, and Cry9C) from Bacillus thuringiensis was examined to find toxins with different receptor sites in the midgut of the striped stem borer (SSB) Chilo suppressalis (Walker) and yellow stem borer (YSB) Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Homologous competition assays were used to estimate binding affinities (K(com)) of (125)I-labelled toxins to brush border membrane vesicles (BBMV). The SSB BBMV affinities in decreasing order was: Cry1Ab = Cry1Ac > Cry9C > Cry2A > Cry1C. In YSB, the order of decreasing affinities was: Cry1Ac > Cry1Ab > Cry9C = Cry2A > Cry1C. The number of binding sites (B(max)) estimated by homologous competition binding among the Cry toxins did not affect toxin binding affinity (K(com)) to both insect midgut BBMVs. Results of the heterologous competition binding assays suggest that Cry1Ab and Cry1Ac compete for the same binding sites in SSB and YSB. Other toxins bind with weak (Cry1C, Cry2A) or no affinity (Cry9C) to Cry1Ab and Cry1Ac binding sites in both species. Cry2A had the lowest toxicity to 10-day-old SSB and Cry1Ab and Cry1Ac were the most toxic. Taken together, the results of this study show that Cry1Ab or Cry1Ac could be combined with either Cry1C, Cry2A, or Cry9C for more durable resistance in transgenic rice. Cry1Ab should not be used together with Cry1Ac because a mutation in one receptor site could diminish binding of both toxins.  相似文献   

4.
Griko N  Candas M  Zhang X  Junker M  Bulla LA 《Biochemistry》2004,43(5):1393-1400
BT-R(1) is a member of the cadherin superfamily of proteins and is expressed in the midgut epithelium of Manduca sexta during larval development. Previously, we showed that calcium ions influence the structure and stability of BT-R(1) on brush border membrane vesicles (BBMVs) prepared from M. sexta midgut epithelium. In the present study, the effects of calcium and Cry1Ab toxin, produced by Bacillus thuringiensis, on the adhesive properties of BBMVs were investigated. Addition of calcium to a suspension of BBMVs promoted adhesion and aggregation of the vesicles. Treatment of BBMVs with trypsin or lowering the pH (pH 4.0) of the BBMV suspension abolished calcium-induced vesicle aggregation, whereas treatment with deglycosylating enzymes did not affect the aggregation of vesicles, indicating that adhesion and clustering of BBMVs involves protein-protein interactions. Preincubation of BBMVs with Cry1Ab toxin, which specifically binds to BT-R(1) with high affinity and disrupts the midgut epithelium of M. sexta, caused a 50% decrease in calcium-induced vesicle aggregation. The inhibitory effects of the Cry1Ab toxin on BBMV aggregation was blocked completely when the toxin was preincubated with a peptide containing the toxin-binding site of BT-R(1). Cry3A toxin, which is similar in molecular structure to Cry1Ab but does not bind to BT-R(1) and is not toxic to M. sexta larvae, did not affect BBMV aggregation. The results of this study demonstrate that the adhesive function of BT-R(1) is compromised by the Cry1Ab toxin, which acts as a selective antagonist, and supports the notion that BT-R(1) is critical in preserving the integrity of larval midgut epithelium in M. sexta.  相似文献   

5.
分离和鉴定二化螟Chilo suppresalis幼虫中肠刷状缘膜囊泡(BBMV)中Cry1A毒素的受体蛋白,对于阐明Cry1A毒素作用机理和二化螟抗性机理具有十分重要的意义。为此,本文就Cry1A毒素对二化螟杀虫活性及Cry1Ac与二化螟中肠受体的配基结合进行了研究。结果表明: Cry1Ab对二化螟室内品系(CN)的毒力高于Cry1Ac,而Cry1Ac高于Cry1Aa。配基结合分析表明二化螟CN品系幼虫中肠BBMV中有6个Cry1Ac结合蛋白(分子量分别为50,70,90,120,160和180 kDa), 其中180,160和90 kDa结合蛋白的条带颜色明显深于其他结合蛋白的条带,表明这3个受体蛋白具有较高的结合浓度。同源竞争结合研究表明,180和90 kDa结合蛋白为Cry1Ac的低亲合性结合蛋白,其他4个为高亲合性结合蛋白。为了研究Cry1Ac和Cry1Ab受体结合部位的相互作用,进行了异源竞争结合研究。Cry1Ab可以与Cry1Ac所有的6个结合蛋白进行竞争性结合,与180,120,70和50 kDa结合蛋白具有高亲合性,而与160和90 kDa结合蛋白具有低亲合性。结果显示,Cry1Ac与Cry1Ab在二化螟幼虫中肠BBMV上拥有多个共享的结合位点,但对每个结合位点的亲合性有差异。基于毒素结合部位的相似性,Cry1Ac和Cry1Ab不宜同时用于转基因Bt水稻来控制二化螟。  相似文献   

6.
Helicoverpa armigera is one of the most harmful pests in China. Although it had been successfully controlled by Cry1A toxins, some H. armigera populations are building up resistance to Cry1A toxins in the laboratory. Vip3A, secreted by Bacillus thuringiensis, is another potential toxin against H. armigera. Previous reports showed that activated Vip3A performs its function by inserting into the midgut brush border membrane vesicles (BBMV) of susceptible insects. To further investigate the binding of Vip3A to BBMV of H. armigera, the full-length Vip3Aa10 toxin expressed in Escherichia coli was digested by trypsin or midgut juice extract, respectively. Among the fragments of digested Vip3Aa10, only a 62 kDa fragment (Vip3Aa10-T) exhibited binding to BBMV of H. armigera and has insecticidal activity. Moreover, this interaction was specific and was not affected by the presence of Cry1Ab toxin. Binding of Vip3Aa10-T to BBMV resulted in the formation of an ion channel. Unlike Cry1A toxins, Vip3Aa10-T was just slightly associated with lipid rafts of BBMV. These data suggest that although activated Vip3Aa10 specifically interacts with BBMV of H. armigera and forms an ion channel, the mode of action of it may be different from that of Cry1A toxins.  相似文献   

7.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.  相似文献   

8.
Bacillus thuringiensis Cry2Ab toxin has been used in combination with Cry1Ac for resistance management on the Bt-cotton that is widely planted worldwide. However, little is known regarding Cry2Ab mode of action. Particularly, there is a gap of knowledge on the identification of insect midgut proteins that bind Cry2Ab and mediate toxicity. In the case of Cry1Ab toxin, a transmembrane cadherin protein and glycosyl-phosphatidylinositol (GPI) anchored proteins like aminopeptidase-N1 (APN1) or alkaline-phosphatase (ALP) from Manduca sexta, have been shown to be important for oligomer formation and insertion into the membrane. Binding competition experiments showed that Cry2Ab toxin does not share binding sites with Cry1Ab toxin in M. sexta brush border membrane vesicles (BBMV). Also, that Cry2Ab shows reduced binding to the Cry1Ab binding molecules cadherin, APN1 or ALP. Finally, ligand blot experiments and protein sequence by LC–MS/MS identified APN2 isoform as a Cry2Ab binding protein. Cloning and expression of APN2 confirmed that APN2 is a Cry2Ab binding protein.  相似文献   

9.
Sesamia nonagrioides is one of the most damaging pests of corn in Spain and other Mediterranean countries. Bt corn expressing the Bacillus thuringiensis Cry1Ab toxin is being grown on about 58,000 ha in Spain. Here we studied the mode of action of this Cry protein on S. nonagrioides (binding to specific receptors, stability of binding, and pore formation) and the modes of action of other Cry proteins that were found to be active in this work (Cry1Ac, Cry1Ca, and Cry1Fa). Binding assays were performed with 125I- or biotin-labeled toxins and larval brush border membrane vesicles (BBMV). Competition experiments indicated that these toxins bind specifically and that Cry1Aa, Cry1Ab, and Cry1Ac share a binding site. Cry1Ca and Cry1Fa bind to different sites. In addition, Cry1Fa binds to Cry1A's binding site with very low affinity and vice versa. Binding of Cry1Ab and Cry1Ac was found to be stable over time, which indicates that the observed binding is irreversible. The pore-forming activity of Cry proteins on BBMV was determined using the voltage-sensitive fluorescent dye DiSC3(5). Membrane permeability increased in the presence of the active toxins Cry1Ab and Cry1Fa but not in the presence of the nonactive toxin Cry1Da. In terms of resistance management, based on our results and the fact that Cry1Ca is not toxic to Ostrinia nubilalis, we recommend pyramiding of Cry1Ab with Cry1Fa in the same Bt corn plant for better long-term control of corn borers.  相似文献   

10.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella.  相似文献   

11.
Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers.  相似文献   

12.
Transgenic corn expressing the Bacillus thuringiensis Cry1Ab gene is highly insecticidal to Ostrinia nubilalis (European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit 125I-Cry1Ab binding to BBMV. Cry1F inhibited 125I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.  相似文献   

13.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.  相似文献   

14.
Transgenic corn expressing the Bacillus thuringiensis Cry1Ab gene is highly insecticidal to Ostrinia nubilalis (European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit (125)I-Cry1Ab binding to BBMV. Cry1F inhibited (125)I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.  相似文献   

15.
Sesamia nonagrioides is one of the most damaging pests of corn in Spain and other Mediterranean countries. Bt corn expressing the Bacillus thuringiensis Cry1Ab toxin is being grown on about 58,000 ha in Spain. Here we studied the mode of action of this Cry protein on S. nonagrioides (binding to specific receptors, stability of binding, and pore formation) and the modes of action of other Cry proteins that were found to be active in this work (Cry1Ac, Cry1Ca, and Cry1Fa). Binding assays were performed with (125)I- or biotin-labeled toxins and larval brush border membrane vesicles (BBMV). Competition experiments indicated that these toxins bind specifically and that Cry1Aa, Cry1Ab, and Cry1Ac share a binding site. Cry1Ca and Cry1Fa bind to different sites. In addition, Cry1Fa binds to Cry1A's binding site with very low affinity and vice versa. Binding of Cry1Ab and Cry1Ac was found to be stable over time, which indicates that the observed binding is irreversible. The pore-forming activity of Cry proteins on BBMV was determined using the voltage-sensitive fluorescent dye DiSC(3)(5). Membrane permeability increased in the presence of the active toxins Cry1Ab and Cry1Fa but not in the presence of the nonactive toxin Cry1Da. In terms of resistance management, based on our results and the fact that Cry1Ca is not toxic to Ostrinia nubilalis, we recommend pyramiding of Cry1Ab with Cry1Fa in the same Bt corn plant for better long-term control of corn borers.  相似文献   

16.
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities.  相似文献   

17.
The insecticidal Cry toxins from Bacillus thuringiensis bacteria are pore-forming toxins that lyse midgut epithelial cells in insects. We have previously proposed that they form pre-pore oligomeric intermediates before membrane insertion. For formation of these oligomers coiled-coil structures are important, and helix alpha-3 from Cry toxins could form coiled-coils. Our data shows that different mutations in helix alpha-3 are affected in pore formation and toxicity. Mutants affected in toxicity bind Bt-R(1) receptor with a similar K(D) as the wild type toxin but do not form oligomers nor induce pore formation in planar lipid bilayers, indicating that the pre-pore oligomer is an obligate intermediate in the intoxication of Cry1Ab toxin and that interaction of monomeric Cry1Ab with Bt-R(1) is not enough to kill susceptible larvae.  相似文献   

18.
Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.  相似文献   

19.
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities.  相似文献   

20.
Aim: To select a toxin combination for the management of maize stem borer (Chilo partellus) and to understand possible mechanism of synergism among Bacillus thuringiensis Cry1A toxins tested. Methods and Results: Three Cry1A toxins were over expressed in Escherichia coli strain JM105 and used for diet overlay insect bioassay against C. partellus neonate larvae, both alone and in combinations. Probit analysis revealed that the three Cry1A toxins tested have synergistic effect against C. partellus larvae. In vitro binding analysis of fluorescein isothiocyanate (FITC)‐labelled Cry1A toxins to midgut brush border membrane vesicle (BBMV) shows that increase in toxicity is directly correlated to an increase in binding of toxin mix. Conclusions: A high Cry1Ac to Cry1Ab ratio leads to an increase in efficacy of these toxins towards C. partellus larvae and this increase in toxicity comes from an increase in toxin binding. Significance and Impact of the Study: Use of Cry1Ab and Cry1Ac combination could be an effective approach to control C. partellus. Furthermore, we show it first time that possible reason behind increase in toxicity of synergistic Cry1A proteins is an increase in toxin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号