首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial dysfunction is characterized by increased levels of reactive oxygen species (ROS) and a prothrombotic state. The mechanisms linking thrombosis to ROS production in the endothelium are not well understood. We investigated the role of thrombin in regulating NADPH oxidase-dependent ROS production and expression of its subunit p22phox in the endothelial cell line EaHy926. Thrombin elicited a biphasic increase in ROS generation peaking within 15 min, but also at 3 h. The delayed response was accompanied by increased p22phox mRNA and protein expression. Two-photon confocal laser microscopy showed colocalization between p22phox and ROS production. Antioxidant treatment with vitamin C or diphenyleneiodonium abrogated thrombin-induced ROS production and p22phox expression, whereas H2O2 elevated ROS production and p22phox levels. Both responses were dependent on p38 MAP kinase and phosphatidylinositol-3-kinase (PI3 kinase)/Akt. Finally, p22phox was required for thrombin- or H2O2-stimulated proliferation. These data show that thrombin rapidly increases ROS production in endothelial cells, resulting, via activation of p38 MAP kinase and PI3 kinase/Akt, in upregulation of p22phox accompanied by a delayed increase in ROS generation and enhanced proliferation. These findings suggest a positive feedback mechanism whereby ROS, possibly generated by the NADPH oxidase, lead to elevated levels of p22phox and, thus, sustained ROS generation as is observed in endothelial dysfunction.  相似文献   

2.
Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.  相似文献   

3.
The internal tandem duplication (ITD) of the juxtamembrane region of the FLT3 receptor has been associated with increased reactive oxygen species (ROS) generation in acute myeloid leukemia (AML). How this elevated level of ROS contributes to the leukemic phenotype, however, remains poorly understood. In this work we show that ROS in the FLT3-ITD expressing AML cell line MV4-11 is reduced by treatment with PKC412, an inhibitor of FLT3, DPI, a flavoprotein inhibitor, and VAS2870, a Nox specific inhibitor, suggesting that ROS production is both FLT3 and NADPH oxidase dependent. The majority of these ROS co-localize to the endoplasmic reticulum (ER), as determined with the H(2)O(2)-specific aryl-boronate dye Peroxyorange 1, which also corresponds to co-localization of p22phox. Moreover, knocking down p22phox dramatically reduces H(2)O(2) after 24 hours in the ER, without affecting mitochondrial ROS. Significantly, the FLT3 inhibitor PKC412 reduces H(2)O(2) in FLT3-ITD expressing cell lines (MV4-11, MOLM-13) through reduction of p22phox over 24 hours. Reduced p22phox is achieved by proteasomal degradation and is prevented upon GSK3-β inhibition. Knockdown of p22phox resulted in reduced STAT5 signalling and reduced Pim-1 levels in the cells after 24 hours. Thus, we have shown that FLT3 driven H(2)O(2) production in AML cells is mediated by p22phox and is critical for STAT5 signalling.  相似文献   

4.
5.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

6.
An NADPH oxidase is thought to be a main source of vascular superoxide (O(2)(-)) production. The functional role of this oxidase, however, and the contribution of the different subunits of the enzyme to cellular signaling are still incompletely understood. We determined the role of the p47phox subunit of the oxidase in O(2)(-) generation and signaling in aortic rings and cultured smooth muscle cells (SMC) from wild-type (WT) and p47phox-deficient (p47phox -/-) mice. Basal O(2)(-) levels in aortae of p47phox -/- mice were lower than those in WT aortae. Infusion of [val(5)]-angiotensin II increased O(2)(-) levels in aortae from WT more than in aortae from p47phox -/- mice. O(2)(-) generation was similar in quiescent SMC from WT and p47phox -/- mice. However, exposure to thrombin selectively increased O(2)(-) generation in VSMC from WT, but not from p47phox -/- mice. Thrombin-activated redox-mediated signal transduction and gene expression was attenuated in VSMC from p47phox -/- compared to cells from WT mice as determined by p38 MAP kinase activation and VEGF gene expression. We conclude that p47phox is important for vascular ROS production and redox-modulated signaling and gene expression in VSMC.  相似文献   

7.
The NADPH oxidase 1 (Nox1) is a gp91(phox) homologue preferentially expressed in the colon. We have established primary cultures of guinea pig large intestinal epithelial cells giving 90% purity of surface mucous cells. These cells spontaneously released superoxide anion (O(2)(-)) of 160 nmol/mg protein/h and expressed the Nox1, p22(phox), p67(phox), and Rac1 mRNAs, but not the gp91(phox), Nox4, p47(phox), p40(phox), and Rac2 mRNAs. They also expressed novel homologues of p47(phox) and p67(phox) (p41(nox) and p51(nox), respectively). Human colon cancer cell lines (T84 and Caco2 cells) expressed the Nox1, p22(phox), p51(nox), and Rac1 mRNAs, but not the other NADPH component mRNAs, and secreted only small amounts of O(2)(-) (<2 nmol/mg protein/h). Cotransfection of p41(nox) and p51(nox) cDNAs in T84 cells enhanced PMA-stimulated O(2)(-) release 5-fold. Treatment of the transfected T84 cells with recombinant flagellin (rFliC) from Salmonella enteritidis further augmented the O(2)(-) release in association with the induction of Nox1 protein. The enhanced O(2)(-) production by cotransfection of p41(nox) and p51(nox) vectors further augmented the rFliC-stimulated IL-8 release from T84 cells. T84 cells expressed the Toll-like receptor 5, and rFliC rapidly phosphorylated TGF-beta-activated kinase 1 and TGF-beta-activated kinase 1-binding protein 1. A potent inhibitor for NF-kappaB (pyrrolidine dithiocarbamate) significantly blocked the rFliC-primed increase in O(2)(-) production and induction of Nox1 protein. These results suggest that p41(nox) and p51(nox) are involved in the Nox1 activation in surface mucous cells of the colon, and besides that, epithelial cells discern pathogenicities among bacteria to appropriately operate Nox1 for the host defense.  相似文献   

8.
Reactive oxygen species (ROS) are important signal transduction molecules in ligand-induced signaling, regulation of cell growth, differentiation, apoptosis and motility. Recently NADPH oxidases (Nox) homologous to Nox2 (gp91phox) of phagocyte cytochrome b558 have been identified, which are an enzymatic source for ROS generation in epithelial cells. This study was undertaken to delineate the requirements for ROS generation by Nox4. Nox4, in contrast to other Nox proteins, produces large amounts of hydrogen peroxide constitutively. Known cytosolic oxidase proteins or the GTPase Rac are not required for this activity. Nox4 associates with the protein p22phox on internal membranes, where ROS generation occurs. Knockdown and gene transfection studies confirmed that Nox4 requires p22phox for ROS generation. Mutational analysis revealed structural requirements affecting expression of the p22phox protein and Nox activity. Mechanistic insight into ROS regulation is significant for understanding fundamental cell biology and pathophysiological conditions.  相似文献   

9.
10.
We reported earlier that monocytes and macrophages from patients with type I Gaucher disease have a decreased capacity to generate superoxide anion (O(2)(-)) on stimulation with opsonized S. aureus or formyl-methionyl-leucyl-phenylalanine. In this study, various forms of the cell-free assay system were used to probe the hypothesis that glucocerebroside (GC) accumulating in Gaucher patients' phagocytes may interfere with the activation of NADPH oxidase. Xanthine/xanthine oxidase assay was applied to explore the possibility that GC may scavenge O(2)(-). We found that addition of GC to the crude, semirecombinant or fully purified cell-free systems inhibited activation of NADPH oxidase in a concentration-dependent manner. The inhibitory effect of GC could be overcome by increased concentrations of p47(phox) and p67(phox). In contrast, O(2)(-) generation was not decreased by GC added to the assembled, catalytically active enzyme complex. In the xanthine/xanthine oxidase system, GC had no effect on the generation of O(2)(-). These data indicate that assembly of the respiratory burst oxidase of phagocytic cells may be a possible target of the pathologic actions of GC.  相似文献   

11.
Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs.  相似文献   

12.
Ehrlichia chaffeensis is an obligate intracellular bacterium that causes human monocytic ehrlichiosis. Ehrlichiae have a biphasic developmental cycle consisting of dense-cored cells (DCs) and reticulate cells (RCs). Isolated DCs are more stress resistant and infectious than RCs. Here, we report that a response regulator, CtrA was upregulated in human monocytes at the late growth stage when DCs develop. E. chaffeensis CtrA bound to the promoters of late-stage transcribed genes: ctrA, ompA (peptidoglycan-associated lipoprotein), bolA (stress-induced morphogen) and surE (stationary-phase survival protein), which contain CtrA-binding motifs, and transactivated ompA, surE and bolA promoter-lacZ fusions in Escherichia coli. OmpA was predominantly expressed in DCs. E. chaffeensis binding to and subsequent infection of monocytes were inhibited by anti-OmpA IgG. E. chaffeensis BolA bound to the promoters of genes encoding outer surface proteins TRP120 and ECH_1038, which were expressed in DCs, and transactivated trp120 and ECH_1038 promoter-lacZ fusions. E. chaffeensis bolA complemented a stress-sensitive E. coli bolA mutant. E. coli expressing E. chaffeensis SurE exhibited increased resistance to osmotic stress. Our results suggest that E. chaffeensis CtrA plays a role in co-ordinating development of the stress resistance for passage from the present to the next host cells through its regulon.  相似文献   

13.
Tumor necrosis factor alpha (TNF-alpha) receptor-associated factors (TRAFs) play important roles in TNF-alpha signaling by interacting with downstream signaling molecules, e.g., mitogen-activated protein kinases (MAPKs). However, TNF-alpha also signals through reactive oxygen species (ROS)-dependent pathways. The interrelationship between these pathways is unclear; however, a recent study suggested that TRAF4 could bind to the NADPH oxidase subunit p47phox. Here, we investigated the potential interaction between p47phox phosphorylation and TRAF4 binding and their relative roles in acute TNF-alpha signaling. Exposure of human microvascular endothelial cells (HMEC-1) to TNF-alpha (100 U/ml; 1 to 60 min) induced rapid (within 5 min) p47phox phosphorylation. This was paralleled by a 2.7- +/- 0.5-fold increase in p47phox-TRAF4 association, membrane translocation of p47phox-TRAF4, a 2.3- +/- 0.4-fold increase in p47phox-p22phox complex formation, and a 3.2- +/- 0.2-fold increase in NADPH-dependent O2- production (all P < 0.05). TRAF4-p47phox binding was accompanied by a progressive increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38(MAPK) activation, which was inhibited by an O2- scavenger, tiron. TRAF4 predominantly bound the phosphorylated form of p47phox, in a protein kinase C-dependent process. Knockdown of TRAF4 expression using siRNA had no effect on p47phox phosphorylation or binding to p22phox but inhibited TNF-alpha-induced ERK1/2 activation. In coronary microvascular EC from p47phox-/- mice, TNF-alpha-induced NADPH oxidase activation, ERK1/2 activation, and cell surface intercellular adhesion molecule 1 (ICAM-1) expression were all inhibited. Thus, both p47phox phosphorylation and TRAF4 are required for acute TNF-alpha signaling. The increased binding between p47phox and TRAF4 that occurs after p47phox phosphorylation could serve to spatially confine ROS generation from NADPH oxidase and subsequent MAPK activation and cell surface ICAM-1 expression in EC.  相似文献   

14.
The NADPH oxidase is a multicomponent enzyme that transfers electrons from NADPH to O2 to generate superoxide (O2*-), the precursor of microbicidal oxygen species that play an important role in host defense. Flavocytochrome b558, a heterodimeric oxidoreductase comprised of gp91(phox) and p22(phox) subunits, contains two nonidentical, bis-histidine-ligated heme groups imbedded within the membrane. Four histidine residues that appear to serve as noncovalent axial heme ligands reside within the hydrophobic N terminus of gp91(phox), but the role of p22(phox) in heme binding is unclear. We compared biochemical and functional features of wild type flavocytochrome b558 with those in cells co-expressing gp91(phox) with p22(phox) harboring amino acid substitutions at histidine 94, the only invariant histidine residue within the p22(phox) subunit. Substitution with leucine, tyrosine, or methionine did not affect heterodimer formation or flavocytochrome b558 function. The heme spectrum in purified preparations of flavocytochrome b558 containing the p22(phox) derivative was unaffected. In contrast, substitution of histidine 94 with arginine appeared to disrupt the intrinsic stability of p22(phox) and, secondarily, the stability of mature gp91(phox) and abrogated O2*- production. These findings demonstrate that His94 p22(phox) is not required for heme binding or function of flavocytochrome b558 in the NADPH oxidase.  相似文献   

15.
The inhibitory mechanism of tea catechins for allergy remains undefined. We studied the effect of catechins, mainly EGCG, on the activation of mast cell line canine cutaneous mastocytoma cells (CM-MC). Compound 48/80 induced the degranulation in CM-MC dose dependently, whereas its release of beta-hexosaminidase was inhibited by EGCG and O-methylated EGCG (EGCG-Me). Both catechins were found to inhibit intracellular ROS generation dose dependently together with DPI. Intracellular ROS generation in human polymorphonuclear leukocytes was also inhibited by EGCG. Neither L-NAME, ebeselen nor NAC inhibited ROS generation. From the Western blot analysis of the subunits components of NADPH oxidase, we detected cytosolic subunits; p47(phox), p67(phox), p40(phox), rac2 and membrane subunits; gp91(phox), p22(phox) in CM-MC. Cytosolic subunits were translocated from cytosol to membrane time dependently after stimulation with compound 48/80. EGCG and DPI inhibited cytosolic subunits from translocating into membrane. These data suggest that EGCG inhibits the activation of NADPH oxidase in CM-MC.  相似文献   

16.
Recent studies have demonstrated that lymphocyte-derived microparticles (LMPs) impair endothelial cell function. However, no data currently exist regarding the contribution of LMPs in the regulation of angiogenesis. In the present study, we investigated the effects of LMPs on angiogenesis in vivo and in vitro and demonstrated that LMPs strongly suppressed aortic ring microvessel sprouting and in vivo corneal neovascularization. In vitro, LMPs considerably diminished human umbilical vein endothelial cell survival and proliferation in a concentration-dependent manner. Mechanistically, the antioxidants U-74389G and U-83836E were partially protective against the antiproliferative effects of LMPs, whereas the NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium significantly abrogated these effects. Moreover, LMPs increased not only the expression of the NOX subunits gp91(phox), p22(phox), and p47(phox), but also the production of ROS and NOX-derived superoxide (O(2)(-)). Importantly, LMPs caused a pronounced augmentation in the protein expression of the CD36 antiangiogenic receptor while significantly downregulating the protein levels of VEGF receptor type 2 and its downstream signaling mediator, phosphorylated ERK1/2. In summary, LMPs potently suppress neovascularization in vivo and in vitro by augmenting ROS generation via NOX and interfering with the VEGF signaling pathway.  相似文献   

17.
The roles of intracellular reactive oxygen species (ROS) and related signalling pathways in mycobacterial infection are largely unknown. Here we show that tuberculin purified protein derivative (PPD)/Toll-like receptor (TLR) 2/ROS signalling through activation of apoptosis-regulating signal kinase (ASK) 1 and p47phox pathways is responsible for the induction of proinflammatory responses during tuberculosis (TB) infection. Tuberculin PPD stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs) and an early burst of ROS in monocytes/macrophages in a TLR2-dependent manner. PPD-induced ROS production led to robust activation of ASK1 upstream of p38 MAPK, via TLR2. Interestingly, phosphorylation of the cytosolic NADPH oxidase subunit p47phox and ASK1 activation are mutually dependent on PPD/TLR2-mediated signalling. Furthermore, active pulmonary TB patients showed upregulated ROS generation, as well as enhanced activation of ASK1/p38/p47phox pathways in their primary monocytes compared with healthy controls, which suggests a systemic primed status during TB. Taken together, these results indicate that activation of the ASK1/p38 MAPK/p47phox cascade plays a central role in PPD/TLR2-induced ROS generation and suggests the existence of a 'ROS/ASK1' inflammatory amplification feedback loop in monocytes/macrophages. The altered regulation of this axis with an increasing free-radical burden may contribute to the immunopathogenesis of human TB.  相似文献   

18.
吞噬细胞NADPH氧化酶能生成用于清除病原微生物的活性氧(reactive oxygen species, ROS),在机体的防御体系中起着非常重要的作用.本文利用RT-PCR结合RACE-PCR的方法,克隆到翘嘴鳜NADPH氧化酶的催化亚基gp91phox和p22phox的cDNA全长.并研究两者在正常的翘嘴鳜和注射了柱状黄杆菌灭活菌苗(FKG4)的翘嘴鳜组织中的表达模式.结果表明,gp91phox基因cDNA序列全长2 037 nt,开放阅读框长度为1 698 nt,翻译成565个氨基酸;p22phox 基因cDNA序列全长1 296 nt,开放阅读框561 nt,翻译成186个氨基酸.将这2个亚基推导的氨基酸序列与人的对应亚基相比,相似性分别为68.7%和60.8%,且具有相似的结构域和功能域,说明翘嘴鳜与人的NADPH氧化酶具有相似的功能活性.半定量PCR分析显示,在翘嘴鳜血液、脑、心脏、肾、肝、脾、胸腺等11种组织中均能检测到gp91phox和p22phox的基因表达.经FKG4免疫后,gp91phox在翘嘴鳜血液、头肾和脾3种组织中的表达量显著上升,p22phox在头肾和脾2种组织中的表达量显著上升.由此推断,NADPH氧化酶可能参与了机体的抗菌免疫应答.  相似文献   

19.
Red tide phytoplankton Chattonella marina is known to produce reactive oxygen species (ROS), such as superoxide anion (O(2)(-)), hydrogen peroxide (H(2)O(2)) and hydroxyl radical (&z.rad;OH), under normal physiological conditions. Although several lines of evidence suggest that ROS are involved in the mortality of fish exposed to C. marina, the mechanism of ROS generation in C. marina remains to be clarified. In this study, we found that the cell-free supernatant prepared from C. marina cells showed NAD(P)H-dependent O(2)(-) generation, and this response was inhibited by diphenyleneiodonium, an inhibitor of mammalian NADPH oxidase. When the cell-free supernatant of C. marina was analyzed by immunoblotting using antibody raised against the human neutrophil cytochrome b558 large subunit (gp91phox), a main band of approximately 110 kDa was detected. The cell surface localization of the epitope recognized with this antibody was also demonstrated in C. marina by indirect immunofluorescence. Furthermore, Southern blot analysis performed on genomic DNA of C. marina with a probe covering the C-terminal region of gp91phox suggested the presence of a single-copy gene coding for gp91phox homologous protein in C. marina. These results provide evidence for the involvement of an enzymatic system analogous to the neutrophil NADPH oxidase as a source of O(2)(-) production in C. marina.  相似文献   

20.
Hyperglycemia-induced generation of reactive oxygen species (ROS) can lead to cardiomyocyte apoptosis and cardiac dysfunction. However, the mechanism by which high glucose causes cardiomyocyte apoptosis is not clear. In this study, we investigated the signaling pathways involved in NADPH oxidase-derived ROS-induced apoptosis in cardiomyocytes under hyperglycemic conditions. H9c2 cells were treated with 5.5 or 33 mM glucose for 36 h. We found that 33 mM glucose resulted in a time-dependent increase in ROS generation as well as a time-dependent increase in protein expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38, as well as the nuclear translocation of NF-kB. Treatment with apocynin or diphenylene iodonium (DPI), NADPH oxidase inhibitors, resulted in reduced expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38. In addition, treatment with JNK and NF-kB siRNAs blocked the activity of caspase-3. Furthermore, treatment with JNK, but not p38, siRNA inhibited the glucose-induced activation of NF-κB. Similar results were obtained in neonatal cardiomyocytes exposed to high glucose concentrations. Therefore, we propose that NADPH oxidase-derived ROS-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号