首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.  相似文献   

2.
Two closely linked genes, un-24 and het-6, associated with the het-6 heterokaryon incompatibility functional haplotype were examined in 40 Neurospora crassa strains from a Louisiana sugarcane field. Partial diploid analyses were used to determine that half of the strains were functionally Oak Ridge (OR) and half were non-OR and indistinguishable from the standard Panama (PA) form. PCR-based markers were developed to identify polymorphisms within both un-24 and het-6. Two common forms of each gene occur based on these molecular markers. Rare forms of both un-24 and het-6 were identified as variants of the non-OR form by a DNA transformation assay. The heterokaryon incompatibility function of haplotypes, based on partial diploid analyses, was perfectly correlated with the PCR-based markers at both loci. This correlation indicates that the two loci are in severe linkage disequilibrium in this population sample and may act as an incompatibility gene complex. Southern hybridizations using OR- and PA-derived cloned probes from the region that spans un-24 and het-6 showed that the apparent absence of recombination in this approximately 25-kbp region is associated with low levels of overall sequence identity between the PA and OR forms.  相似文献   

3.
4.
Micali CO  Smith ML 《Genetics》2006,173(4):1991-2004
Nonself recognition is exemplified in the fungal kingdom by the regulation of cell fusion events between genetically different individuals (heterokaryosis). The het-6 locus is one of approximately 10 loci that control heterokaryon incompatibility during vegetative growth of N. crassa. Previously, it was found that het-6-associated incompatibility in Oak Ridge (OR) strains involves two contiguous genes, het-6 and un-24. The OR allele of either gene causes "strong" incompatibility (cell death) when transformed into Panama (PA)-background strains. Several remarkable features of the locus include the nature of these incompatibility genes (het-6 is a member of a repetitive gene family and un-24 also encodes the large subunit of ribonucleotide reductase) and the observation that un-24 and het-6 are in severe linkage disequilibrium. Here, we identify "weak" (slow, aberrant growth) incompatibility activities by un-24PA and het-6PA when transformed separately into OR strains, whereas together they exhibit an additive, strong effect. We synthesized strains with the new allelic combinations un-24PA het-6OR and un-24OR het-6PA, which are not found in nature. These strains grow normally and have distinct nonself recognition capabilities but may have reduced fitness. Comparing the Oak Ridge and Panama het-6 regions revealed a paracentric inversion, the architecture of which provides insights into the evolution of the un-24-het-6 gene complex.  相似文献   

5.
In species of Neurospora, non-self recognition is mediated by at least 11 heterokaryon (het) incompatibility loci. Previously, we identified ancient allelic variation at het-c in pseudohomothallic N. tetrasperma, which confirmed outcrossing in this species. Here, we report distinct ancestral alleles at het-6 and un-24, two closely linked genes with het incompatibility function in N. crassa. The pattern of variation at het-6 and un-24 in N. tetrasperma is similar to that observed for N. crassa, where two ancestral allele specificities exist for each locus, Oak Ridge (het-6(OR), un-24(OR)) and Panama (het-6(PA), un-24(PA)). Only het-6(OR)/un-24(OR) and het-6(PA)/un-24(PA) allele combinations have been observed. The absence of recombinant haplotypes (e.g., het-6(OR)/un-24(PA)) appears to derive from an ancestral chromosomal rearrangement that limits recombination. Allelic variation at het-6 and un-24 in N. tetrasperma provides further evidence of outcrossing in this predominantly selfing species and indicates that selection maintains ancient allelic diversity at het loci.  相似文献   

6.
Orest M. Mylyk 《Genetics》1975,80(1):107-124
Evidence is presented for five or six previously undetected heterokaryon incompatibility (het) loci, bringing to about ten the number of such genes known in Neurospora crassa. The genes were detected using chromosome duplications (partial diploids), on the basis of properties previously known for het genes in duplications. Duplications homozygous for het genes are usually normal in growth and morphology, whereas those heterozygous are strikingly different. The heterozygotes are inhibited in their initial growth, produce brown pigment on appropriate medium, and later "escape" from their inhibition, as a result of somatic events, to produce wild-type growth. - Five normal-sequence strains were crossed to 14 duplication-producing chromosome rearrangements, and the duplication progeny were examined for properties characteristic of duplications heterozygous for known het genes. Each cross produced duplications for a specific region of the genome, depending on the rearrangement. Normal-sequence strains were wild types from nature, chosen from diverse geographic locations to serve as sources of genetic variation. - The duplication method was very effective. Most of the longer duplications uncovered het genes. The genes are: het-5 (on linkage group IR, in the region covered by duplications produced using rearrangement T (IR LEADS TO VIR)NM103), het-6 (on IIL, covered by T(IIL LEADS TO VI)P2869 and T(IIL LEADS TO IIIR)AR18 duplications), het-7 (tentatively assigned to IIIR, T(IIIR LEADS TO VIL)D305), het-8 (VIL, T(VIL LEADS TO IR)T39M777), het-9 (VIR LEADS TO IVR)AR209), and het-10 (VIIR, T(VIIR LEADS TO IL)5936.  相似文献   

7.
Modification of chromosome instability in Aspergillus nidulans   总被引:1,自引:0,他引:1  
Strains of Aspergillus nidulans with a chromosome segment in duplicate show instability at mitosis; their colonies produce faster-growing sectors which arise from nuclei with spontaneous deletions in either duplicate segment. In an attempt to probe the deletion process, the effects of mutations causing sensitivity to UV treatment, and those of manganous ions, have been studied in strains carrying either Dp(I,II) or Dp(III,VIII). For comparison, the effects of Mn2+ on balanced and unbalanced diploids have also been examined. The uvsE allele, which decreases intragenic mitotic crossing over in diploids, increased deletion frequency in strains with either duplication. The uvsB allele, which increases intragenic mitotic crossing over in diploids, increased deletion frequency only in Dp(I,II) strains; in addition, by causing early mitotic crossing over between the homologous segments, it produced some novel deletion products. Mn2+ substantially decreased the deletion frequency in Dp(I,II) strains and decreased mitotic crossing over in diploids; it had no effect on Dp(III,VIII) strains. The results suggest that in haploid duplication strains there are two classes of spontaneous DNA lesions, recombinogenic and non-recombinogenic, both of which, failing repair, lead to deletion.  相似文献   

8.
When Shigella dysenteriae strain 60 is used as a donor and Escherichia coli K-12 strains that are ultraviolet (UV)-sensitive, mucoid, and proline-requiring (Pro(-)) are employed as recipients, selection for Pro(+) yields 2 to 6% nonmucoid clones. All of the nonmucoid clones examined are UV-resistant. Most of the nonmucoid UV-resistant transductants are partial diploids for the genes being studied. When these Shigella-Escherichia hybrids are used as donors with the same E. coli recipients, the cotransduction of Pro(+) and nonmucoidness is greatly increased (59 to 94% cotransduction). All of these nonmucoid transductants examined were also UV-resistant. The results indicate that Shigella contains an allele (designated ShproC(+)) homologous to proC of E. coli and a second linked allele (designated ShcapR(+)) homologous to the capR allele of E. coli. The ShcapR(+) allele changes the phenotype of certain E. coli strains from mucoid UV-sensitive (capR6) or very sensitive (capR9) to nonmucoid and UV-resistant. Unanticipated capR allele interactions in the partial diploid hybrids are described.  相似文献   

9.
A new mutant strain of Escherichia coli in which phosphorylation is uncoupled from electron transport was isolated. A genetic-complementation analysis, using partial diploid strains, showed that the new mutant allele, uncD409, is in a gene distinct from the other previously identified genes uncA, uncB and uncC. A strain carrying the uncd409 allele has no Mg2+ ion-stimulated adenosine triphosphatase activity and is therefore phenotypically similar to strains carrying the uncA401 mutant allele. Complementation between the uncA401 and the uncD409 alleles occurred, as indicated by growth of partial diploid strains on succinate and their growth yields on limiting concentrations of glucose. Complementation was confirmed by using membranes prepared from the above partial diploids. Such membranes were found to have Mg2+-stimulated adenosine triphosphatase activity, ATP-dependent transhydrogenase activity ADP-induced atebrin-fluorescence quenching and low but significant amounts of oxidative phosphorylation.  相似文献   

10.
The replication order of markers was studied in Bacillus subtilis strains bearing the trpE26 mutation by the use of the density transfer technique. An important difference in this order was observed in comparison with that of strain 168 T-. All markers tested of a chromosome segment extending from trpD to ilvA replicated early, after purB6 and before thr-5. Two markers flanking this region, trpE8 and citK7, replicated late as usual. The results suggested that this segment was shifted in trpE26 strains to a region closer to the origin of replication. PBS-1-mediated transduction crosses corroborated this hypothesis and revealed the position of the translocated segment. (i) Linkage was demonstrated for markers in the segment (hisH2, tryA1, met B3, ilvA2) to thr-5 and ald; (ii) aroB2 and citK7 were found to be linked; and (iii) linkage of cysB3 to thr-5 was lost in trpE26 strains. These findings made it possible to account for the characteristics of the trpE26 mutation and to propose a model explaining the fact that all trpE26+ transformants or transductants are merodiploid. The model calls for fusion of two genetic elements: two independent chromosomes, or two arms of a replicating structure. The resulting chromosome bears a long tandem duplication. Most of the features of this system of merodiploid formation can be interpreted by use of this model: the segregation pattern of the diploids, the stabilization of the unstable clones, and the length of the duplicated region. A relatively stable diploid strain was also studied by the density transfer technique. The data show that it remained diploid for the region corresponding to the translocated segment and are in agreement with the structure predicted by the model.  相似文献   

11.
12.
Summary The genetic location has been determined of two mutations which suppress the temperature-sensitive phenotype of an alanyl-tRNA-synthetase mutant of Escherichia coli and which are correlated with alterations of the ribosomal protein S20. Both mutations map at the same chromosomal site; the gene order relative to other markers of the Escherichia coli map is thr-sup-pyrA-araC-leu.Replacement of the suppressor allele by the wild-type allele via P1 transduction results in the appearance of the wild-type S20 protein; concomitantly suppression of temperature-sensitivity is released.Strains of Escherichia coli were contructed which are partially diploid for the region of the chromosome containing the suppressor allele. Investigation of these strains revealed that the wild-type suppressor is dominant as judged by the activity to suppress the alaS mutation since the partial diploids are no longer able to suppress the alaS-3 mutation. Investigation of the ribosomal protein pattern of these partial diploids by means of two-dimensional polyacrylamide gel electrophoresis did not reveal two distinct spots characteristic for the normal and the altered forms of S20; rather, an elongated spot was observed trailing from the wild-type S20 position towards the anode.  相似文献   

13.
D. K. Butler 《Genetics》1992,131(3):581-592
In wild-type strains of Neurospora crassa, the rDNA is located at a single site in the genome called the nucleolus organizer region (NOR), which forms a terminal segment on linkage group (LG) V. In the quasiterminal translocation strain T(I;V)AR190, most of the right arm of LG I moved to the distal tip of the NOR, and one or a few rDNA repeat units are moved to the truncated right arm of LG I. I report here that, in partial diploid strains derived from T(I;V)AR190, large terminal deletions result from chromosome breakage in the NOR. In most of these partial diploids, chromosome breakage is apparently frequent and the breakpoints occur in many parts of the NOR. The rDNA ends resulting from chromosome breakage are "healed" by the addition of new telomeres. Significantly, the presence of ectopic rDNA creates a new site of chromosome breakage in the genome of partial diploids. These results raise the possibility that, under certain conditions, rDNA is a region of fragility in eukaryotic chromosomes.  相似文献   

14.
Wild-type isolates of Dictyostelium discoideum exhibited differences in the size of restriction fragments of the extrachromosomal 88-kilobase ribosomal DNA (rDNA) palindrome. Polymorphisms in rDNA also were found among strains derived solely from the NC4 wild-type isolate. These variations involved EcoRI fragments II, III, and V; they included loss of the EcoRI site separating fragments II and V and deletion and insertion of DNA. More than one rDNA form can coexist in the same diploid or haploid cell. However, one or another parental rDNA tended to predominate in diploids constructed, using the parasexual cycle, between haploid NC4-derived strains and haploid wild-type isolates. In some cases, most if not all of the rDNA of such diploids were of one form after ca. 50 generations of growth. Segregant haploids, derived from diploids that possessed predominantly a single rDNA allele, possessed the same allele as the diploid and did not recover the other form. This evidence implies that replication does not proceed from a single chromosomal or extrachromosomal copy of the rDNA during the asexual life cycle of D. discoideum.  相似文献   

15.
A V Stolbova 《Genetika》1987,23(8):1390-1398
This article continues the investigation of polyauxotrophic (PA) clones formed in early mitotic progeny of zygotes. Cloning and segregation analysis of PA progeny suggest an unusual state of diploid genome in these strains, which is expressed as elimination of the dominance effect of the wild allele and as suppression or conversion of either of two loci of mating type. In PA progeny, except for recombinant haploids, sporulating diploids and unstable clones were detected. The tetrad analysis of the diploids points to homozygotization for individual markers. Over-replication of diploid set of chromosomes, prior to meiosis, and replacement of the haploid nucleus (the product of meiosis) for the diploid nucleus may explain the appearance of sporulating segregants in the diploid meiotic progeny. Unstable segregants may be considered as heterokaryons with complex interaction of nuclei.  相似文献   

16.
In Neurospora crassa, strains of opposite mating type generally do not form stable heterokaryons because the mating type locus acts as a heterokaryon incompatibility locus. However, when one A and one a strain, having complementing auxotrophic mutants, are placed together on minimal medium, growth may occur, although the growth is generally slow. In this study, escape from such slow growth to that at a wild type or near-wild type rate was observed. The escape cultures are stable heterokaryons, mostly having lost the mating type allele function from one component nucleus, so that the nuclear types are heterokaryon compatible. Either A or a mating type can be lost. This loss of function has been attributed to deletion since only one nuclear type could be recovered in all heterokaryons except one, but deletion spanning adjacent loci has been directly demonstrated in a minority of cases. Alternatively when one component strain is tol and the other tol+ (tol being a recessive mutant suppressing the heterokaryon incompatibility associated with mating type), escape may occur by the deletion or mutation of tol+, also resulting in heterokaryon compatibility. An induction mechanism for escape is speculated upon.  相似文献   

17.
Streptomyces coelicolor bald (bld) mutants form colonies of vegetative substrate mycelium, but do not develop aerial hyphae or spore chains. The bldA strains form none of the four antibiotics known to be produced by the parent strain. With a vector derived from the temperate bacteriophage phi C31, a 5.6-kilobase fragment of wildtype DNA was cloned which restored sporulation to five independent bldA mutants when lysogenized with the recombinant phage. The cloned gene(s) was dominant over the mutant alleles. Phage integration by recombination of the cloned bldA+ DNA with the bldA region of each mutant produced mainly sporulating colonies, presumably heterozygous bldA+/bldA partial diploids for the insert DNA. However, a minority of these primary transductants were bald and were apparently homozygous bldA/bldA mutant partial diploids, formed by some homogenetization process. The phages released from the bald lysogens carried bldA mutations and were used to show that bldA+ sequences had been cloned and that fine mapping of the region could be performed.  相似文献   

18.
The Haemophilus influenzae Rd rec-1+ gene was cloned from a partial chromosomal digest into a plasmid vector as a 20-kilobase-pair (kbp) BstEII fragment and then subcloned. The smallest subclone with rec-1+ activity carried a 3.1-kbp EcoRI fragment. The identity of the rec-I gene in these clones was confirmed by transforming an Rd strain carrying a leaky rec-1 mutation (recA4) to resistance to methyl methanesulfonate (MMS) by using whole or digested plasmids. It was demonstrated that the Rec+ phenotype of the MMSr transformants was linked to the strA, novAB, and mmsA loci, as expected if the recA4 allele had been replaced by rec-1+. In growing cultures (rec-1 or rec+), all rec-1+-carrying plasmids induced near-maximal levels of transformability when their hosts reached stationary phase; these levels are 100 to 1,000 times higher than the values seen with strains not carrying a Rec plasmid. Transfer of the 3.1-kbp subclone was greatly reduced compared with transfer of similarly sized vector plasmids, and the resulting transformants grew slowly; this suggests an explanation of my failure to directly clone this fragment from chromosomal DNA digests. Transfer of a rec-1+ plasmid to a very poorly genetically transformable H. influenzae Rb strain resulted in greatly increased transformability. Transfer of such plasmids to a noncompetent H. influenzae Rc strain did not render this strain competent. It is suggested that transformability of Rd and Rb strains is limited by rec-1 expression but that the noncompetence of Rc has some other basis.  相似文献   

19.
A plasmid was isolated which included the region of the Escherichia coli chromosome carrying the known genes concerned with oxidative phosphorylation (unc genes). This plasmid was used to prepare partial diploids carrying normal unc alleles on the episome and one of the three mutant alleles (unc A401, uncB402 or unc-405) on the chromosome. These strains were compared with segregants from which the plasmid had been lost. Dominance of either normal ormutant unc alleles was determined by growth on succinate, growth yields on glucose, Mg-ATPase (Mg2+-stimulated adenosine triphosphatase) activity, atebrin-fluorescence quenching, ATP-dependent transhydrogenase activity and oxidative phosphorylation. In all the above tests, dominance of the normal allele was observed. However, in membranes from the diploid strains which carried a normal allele and either of the mutant alleles affecting Mg-ATPase activity (uncA401 or unc-405), the energy-linked functions were only partially restored.  相似文献   

20.
Translocations in DICTYOSTELIUM DISCOIDEUM   总被引:9,自引:4,他引:5       下载免费PDF全文
Fourteen translocations of independent origin were identified in Dictyostelium discoideum on the basis of segregation anomalies of diploids heterozygous for these chromosome rearrangements, all of which led to the cosegregation of unlinked markers. Many of these translocations were discovered in strains mutagenized with MNNG or in strains carrying mutations affecting DNA repair; however, spontaneous translocations were also obtained. Haploid mitotic recombinants of the rearranged linkage groups were produced from diploids heterozygous for the translocations at frequencies of up to 5% of viable haploid segregants; this is at least a ten-fold higher frequency than that seen with diploids not heterozygous for translocations (approximately 0.1%). These haploid recombinants included both translocated and nontranslocated strains. The T354(II, VII) translocation and possibly the T357(IV, VII) translocation reduce the chromosome number to n = 6; haploids carrying 11 other translocations all have karyotypes with n = 7. Genetic characterization of the T357(IV, VII) translocation showed that the bwnA and whiC loci normally found on linkage group IV were physically linked to the linkage group VII loci couA, phgA, bsgB and cobA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号