首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human‐centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most – but not all – arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity–ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here.  相似文献   

2.
What criteria should be used to select biodiversity indicators?   总被引:2,自引:0,他引:2  
The conservation of biodiversity is a major goal in nature conservation, but measuring the total biodiversity of a site or a region is not possible; thus there is a great demand for indicators to represent biodiversity. To be able to make use of indicators, criteria must first be established for their selection, and the degree to which the indicators meet the criteria must be tested. However, the purposes for which indicators are applied—and thus sometimes the criteria themselves—differ between ecological science and environmental policy. As transparency in choosing and testing suitable biodiversity indicators will optimize the results of an indicator, this article first aims to determine if there are common approaches in selecting biodiversity indicators in ecology and environmental policy. Second, we asked which criteria biodiversity indicators were scientifically tested against to determine their suitability. To answer these questions, we analyzed papers on biodiversity indicators referenced in the Web of Science. Our results demonstrate different patterns for selecting biodiversity indicators in the different fields of application. In ecology, the quality of indicators is mainly determined by a close relationship between indicator and indicandum (i.e., indicated phenomenon), while the relevance of an indicator for a given issue, e.g., reserve selection or an assessment of a certain impact, is of paramount importance for conservation policy. Surprisingly, few biodiversity indicators are empirically tested to determine if they meet the criteria by which they were purportedly chosen. We argue that this is due to the different conceptualizations of biodiversity indicators in science and environmental policy. Since the suitability of biodiversity indicators remains untested in many cases, our findings suggest room to make better use of indicators in ecology and environmental policy. As the results of ecological research are put to use to solve environmental problems, the selection of indicators for ecological research should correspond to a large extent with those used in environmental policy. Further, to assess the suitability of a biodiversity indicator, it should be tested against all of the criteria relevant for its selection.  相似文献   

3.
生物多样性监测指标体系构建研究进展   总被引:14,自引:1,他引:13  
陈圣宾  蒋高明  高吉喜  李永庚  苏德 《生态学报》2008,28(10):5123-5132
生物多样性监测是为确定与预期标准相一致或相背离的程度,而对生物多样性进行定期或不定期的监视,目前已成为生物多样性研究和保护的热点问题。生物多样性监测指标则是一些简化的生物或环境特征参数,说明生物多样性现状和变化趋势,以及人类活动压力对生物多样性的影响,以促进科学界、政府和公众间的沟通,提高生物多样性管理水平。近10年来,国际组织、政府机构和各国学者对生物多样性指标体系的构建进行了大量的探索工作,取得了很多进展,其中有些指标已经应用于实际监测项目。本文综述了生物多样性监测指标筛选的一般标准和指标体系构建的主要理论,梳理目前已提出或应用的主要生物多样性监测指标,以期为我国构建国家或区域尺度生物多样性监测指标体系提供参考。在此基础上分析提出:生物多样性概念的泛化、指标含义模糊以及知识和数据的缺乏是构建生物多样性监测指标的主要困难。我国未来的生物多样性监测指标体系构建需要关注以下两个方面:(1)紧密联系实际,构建适应性的监测指标体系,加强对典型生态系统区域的监测;(2)发展经济社会发展方面的指标,分析生物多样性变化的驱动力,为生物多样性保护和区域可持续发展提供科学依据。  相似文献   

4.
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant. We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans. We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology. In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.  相似文献   

5.
Aim A species’ dispersal characteristics will play a key role in determining its likely fate during a period of environmental change. However, these characteristics are not constant within a species – instead, there is often both considerable interpopulation and interindividual variability. Also changes in selection pressures can result in the evolution of dispersal characteristics, with knock‐on consequences for a species’ population dynamics. Our aim here is to make our theoretical understanding of dispersal evolution more conservation‐relevant by moving beyond the rather abstract, phenomenological models that have dominated the literature towards a more mechanism‐based approach. Methods We introduce a continuous‐space, individual‐based model for wind‐dispersed plants where release height is determined by an individual’s ‘genotype’. A mechanistic wind dispersal model is used to simulate seed dispersal. Selection acts on variation in release height that is generated through mutation. Results We confirm that, when habitat is fragmented, both evolutionary rescue and evolutionary suicide remain possible outcomes when a mechanistic dispersal model is used. We also demonstrate the potential for what we term evolutionary entrapment. A population that under some conditions can evolve to be sufficiently dispersive that it expands rapidly across a fragmented landscape can, under different conditions, become trapped by a combination of limited dispersal and a large gap between patches. Conclusions While developing evolutionary models to be used as conservation tools is undoubtedly a challenge, we believe that, with a concerted collaborative effort linking the knowledge and methods of ecologists, evolutionary biologists and geneticists, it is an achievable aim.  相似文献   

6.
The huge conservation interest that mammals attract and the large datasets that have been collected on them have propelled a diversity of global mammal prioritization schemes, but no comprehensive global mammal conservation strategy. We highlight some of the potential discrepancies between the schemes presented in this theme issue, including: conservation of species or areas, reactive and proactive conservation approaches, conservation knowledge and action, levels of aggregation of indicators of trend and scale issues. We propose that recently collected global mammal data and many of the mammal prioritization schemes now available could be incorporated into a comprehensive global strategy for the conservation of mammals. The task of developing such a strategy should be coordinated by a super-partes, authoritative institution (e.g. the International Union for Conservation of Nature, IUCN). The strategy would facilitate funding agencies, conservation organizations and national institutions to rapidly identify a number of short-term and long-term global conservation priorities, and act complementarily to achieve them.  相似文献   

7.
Conservation science and conservation action are assumed to have identical goals. However, in reality, there is a strong divide between research and practical conservation that has been mostly discussed with respect to the ‘knowing-doing gap’, i.e. the results from science are not being translated into practical management. In this commentary, we argue that there is not one but there are at least three different types of gaps impeding a positive impact of science on conservation: (1) the knowing-doing gap; (2) the thematic gap that exists between the topics addressed by conservation science and the problems faced in conservation; and (3) the disciplinary gap, i.e. the lack of communication and cooperation between different fields of science, e.g. between fundamental biodiversity research and conservation research. These different gaps have different origins and require different means to be overcome. In a survey, scientists from the field of conservation research (all contributing to this special issue on European grasslands) assessed the importance of these three gaps. They highlight that the disciplinary gap is just as relevant as the knowing-doing gap, while the importance of the thematic gap between practical conservation needs and theoretical conservation science is, in the view of the authors, of less importance. Also, the respondents identified the complexity of academic content in scientific publications as an additional cause for knowing-doing gaps. Based on our survey and various other studies analysing these gaps, we suggest two ways to overcome the gaps: if you consider yourself to be a conservation scientist make sure to address questions of relevance for conservation issues, if you are a scientist interested in fundamental issues, be open to mutual interaction and translation of scientific results with conservation scientists. The knowing-doing gap could be addressed by more readily translating the theoretical findings into practical advice. “Conservation Journals” could, for instance, require a second “Conservation Management Abstract”, which has to be published open-access, and back-to-back with the conventional abstract.  相似文献   

8.
Wolf JB  Harris WE  Royle NJ 《Genetica》2008,134(1):89-97
In theory, females of many species choose mates based on traits that are indicators of male genetic quality. A fundamental question in evolutionary biology is why genetic variation for such indicator traits persists despite strong persistent selection imposed by female preference, which is known as the lek paradox. One potential solution to the lek paradox suggests that the traits that are targets of mate choice should evolve condition-dependent expression and that condition should have a large genetic variance. Condition is expected to exhibit high genetic variance because it is affected by a large number of physiological processes and hence, condition-dependent traits should 'capture' variation contributed by a large number of loci. We suggest that a potentially important cause of variation in condition is competition for limited resources. Here, we discuss a pair of models to analyze the evolutionary genetics of traits affected by success in social competition for resources. We show that competition can contribute to genetic variation of 'competition-dependent' traits that have fundamentally different evolutionary properties than other sources of variation. Competition dependence can make traits honest indicators of genetic quality by revealing the relative competitive ability of males, can provide a component of heritable variation that does not contribute to trait evolution, and can help maintain heritable variation under directional selection. Here we provide a general introduction to the concept of competition dependence and briefly introduce two models to demonstrate the potential evolutionary consequences of competition-dependent trait expression.  相似文献   

9.
Comparative methods in developmental biology   总被引:3,自引:0,他引:3  
The need for a phylogenetic framework is becoming appreciated in many areas of biology. Such a framework has found limited use in developmental studies. Our current research program is therefore directed to applying comparative and phylogenetic methods to developmental data. In this paper, we examine the concepts underlying this work, discuss potential difficulties, and identify some solutions. While developmental biologists frequently make cross-species comparisons, they usually adopt a phenetic approach, whereby degrees of overall similarity in development are sought. Little emphasis is placed on reconstructing the evolutionary divergence in developmental characters. Indeed, developmental biologists have historically concentrated on apparently ‘conserved’ or ‘universal’ developmental mechanisms. Thus, there has been little need for phylogenetic methodologies which analyse specialised features shared only within a subset of species (i.e., synapomorphies). We discuss the potential value of such methodologies, and argue that difficulties in adapting them to developmental studies fall into three interlinked areas: One concerns the nature and definition of developmental characters. Another is the difficulty of identifying equivalent developmental stages in different species. Finally the phylogenetic non-independence of developmental characters presents real problems under some protocols. These problems are not resolved. However, it is clear that the application of phylogenetic methodology to developmental data is both necessary and fundamental to research into the relationship between evolution and development.  相似文献   

10.
本文简要论述了2010-1015年间,我国濒危哺乳动物(主要是食肉类、灵长类、有蹄类和鲸类) 保护生物学的研究进展,涉及进化保护生物学、保护生态学、保护行为学、保护生理学、保护遗传学、保护基因组学与宏基因组学和保护政策建议与实践等诸多领域。以大熊猫和金丝猴为代表的濒危动物保护生物学研究成绩显著。各项研究结果表明,大熊猫并非是一个已走到“进化尽头”的物种,仍具进化潜力。虽然大熊猫仍然面临栖息地破碎等环境问题,总的来看其种群数量在逐渐增长,栖息地面积在逐渐扩大,已走出困境并脱离“濒危”的状态,可降为“易危”。我国大熊猫的保护为世界生物多样性保护树立了成功的范例。根据国内研究进展和国际发展动态,该文还对未来保护生物学的研究提出了一些建议,包括加强长期定点监测与系统性的研究工作,加强新理论、新方法和新技术的研发及应用,加强宏微观研究手段的结合从机制上揭示科学问题,加强动物对食物、高原极端环境和水生生态环境的适应性进化分子机制的揭示,加强理论与实践相结合积极推动研究成果的应用,为濒危动物的有效保护保驾护航。  相似文献   

11.
Interest in incorporating life history research from evolutionary biology into the human sciences has grown rapidly in recent years. Two core features of this research have the potential to prove valuable in strengthening theoretical frameworks in the health and social sciences: the idea that there is a fundamental trade-off between reproduction and health; and that environmental influences are important in determining how life histories develop. However, the literature on human life histories has increasingly travelled away from its origins in biology, and become conceptually diverse. For example, there are differences of opinion between evolutionary researchers about the extent to which behavioural traits associate with life history traits to form ‘life history strategies’. Here, I review the different approaches to human life histories from evolutionary anthropologists, developmental psychologists and personality psychologists, in order to assess the evidence for human ‘life history strategies’. While there is precedent in biology for the argument that some behavioural traits, notably risk-taking behaviour, may be linked in predictable ways with life history traits, there is little theoretical or empirical justification for including a very wide range of behavioural traits in a ‘life history strategy’. Given the potential of life history approaches to provide a powerful theoretical framework for understanding human health and behaviour, I then recommend productive ways forward for the field: 1) greater focus on the life history trade-offs which underlie proposed strategies; 2) greater precision when using the language of life history theory and life history strategies; 3) collecting more empirical data, from a diverse range of populations, on linkages between life history traits, behavioural traits and the environment, including the underlying mechanisms which generate these linkages; and 4) greater integration with the social and health sciences.  相似文献   

12.
In response to ever-increasing anthropogenic changes to natural ecosystems, regional, national and international organizations have established guidelines for monitoring biological diversity. Most monitoring programs, however, do not take full advantage of the potential afforded by molecular genetic markers, which can provide information relevant to both ecological and evolutionary time frames, while costing less and being more sensitive and reliable than traditional monitoring approaches. As several molecular and computational approaches are relatively new, many technical and theoretical issues remain to be resolved. Here, we illustrate how DNA and population genetic data can provide valuable information, often unattainable via other approaches, for monitoring species of management, conservation and ecological interest.  相似文献   

13.
In order to define functional regions within ribosomal RNA, we have identified areas of the molecule which have been conserved during evolution. Our previous studies showed that there is evolutionary conservation between the rRNAs of different eukaryotes and that the sequences conserved between distantly related species are a subset of those conserved between closely related species. In the present work, we have employed DNA-DNA and DNA-RNA hybridization techniques to localize these conserved regions to mapped restriction fragments 50 to 300 base-pairs in length within cloned Xenopus laevis ribosomal DNA. Our experiments have detected evolutionary conservation only within the coding regions, suggesting that if there is any conservation within the spacers, these sequences must be very short. Regions of conservation can be classified either by evolutionary distance or by the extent of conservation between two species. Three regions, including one near the 3' end of 18 S and two near the 3' end of 28 S rRNA are conserved over great evolutionary distance, that is between Escherichia coli and X. laevis. In addition, several fragments in the central portions of the 188 and 28 S rRNAs are exceptional in the extent of their conservation between yeast and Xenopus. We have been able to correlate the regions we have defined as conserved with certain structural or functional roles, such as initiation of translation, possible interaction with transfer RNA, rRNA methylation, and the site where intervening sequences interrupt some eukaryotic rRNAs. As a result, these studies serve to define relatively short (less than 300 base-pairs) segments within the almost 11,000 base X. laevis rDNA repeat unit which are worthy of further investigation.  相似文献   

14.
The decline and loss of biodiversity provoked by human activities have caused ecologists and conservationists to center their attention on the design of conservation priority areas (PAs), focusing mainly on species conservation in terms of richness, rarity and/or vulnerability. However, biodiversity has multiple dimensions, evolutionary processes have recently been labeled the ‘missing component’ of conservation strategies, and increasingly more authors are suggesting that the ecological, evolutionary and historical aspects of biodiversity are key components of conservation planning. In this study we develop a prioritization system to design conservation PAs using the wild terrestrial mammals of the Iberian Peninsula as an example. We aim to contribute to the design of more suitable PAs by integrating ecological components of biodiversity (species richness, vulnerability and rarity), evolutionary aspects (accumulated genetic diversification) and historical information relevant to the study area. After selecting a set of biodiversity indicators, we applied a multi-objective technique (extended goal programming) to construct a combined index, where values in the top 90th percentile were then used to select the PAs. According to our most efficient and satisfactory results, some areas highlighted for their conservation are currently categorized as PAs, however, we found that it would be necessary to reconsider their extent, especially in northern Spain, where the historical aspects of biodiversity (the missing component) are more widely present. The need to determine PAs is unquestionable. However, it should also be a priority to move towards a model of sustainable and fair development.  相似文献   

15.
Because of inadequate knowledge and funding, the use of biodiversity indicators is often suggested as a way to support management decisions. Consequently, many studies have analyzed the performance of certain groups as indicator taxa. However, in addition to knowing whether certain groups can adequately represent the biodiversity as a whole, we must also know whether they show similar responses to the main structuring processes affecting biodiversity. Here we present an application of the metacommunity framework for evaluating the effectiveness of biodiversity indicators. Although the metacommunity framework has contributed to a better understanding of biodiversity patterns, there is still limited discussion about its implications for conservation and biomonitoring. We evaluated the effectiveness of indicator taxa in representing spatial variation in macroinvertebrate community composition in Atlantic Forest streams, and the processes that drive this variation. We focused on analyzing whether some groups conform to environmental processes and other groups are more influenced by spatial processes, and on how this can help in deciding which indicator group or groups should be used. We showed that a relatively small subset of taxa from the metacommunity would represent 80% of the variation in community composition shown by the entire metacommunity. Moreover, this subset does not have to be composed of predetermined taxonomic groups, but rather can be defined based on random subsets. We also found that some random subsets composed of a small number of genera performed better in responding to major environmental gradients. There were also random subsets that seemed to be affected by spatial processes, which could indicate important historical processes. We were able to integrate in the same theoretical and practical framework, the selection of biodiversity surrogates, indicators of environmental conditions, and more importantly, an explicit integration of environmental and spatial processes into the selection approach.  相似文献   

16.
As biodiversity continues to be lost at an alarming rate, strategies for prioritizing populations for conservation have become increasingly important. Maintaining intraspecific genetic diversity is of particular importance for preserving evolutionary history and the potential for future adaptation. In order to effectively protect this diversity, units below the species level need to be defined. However, delineation of such units is subject to many challenges, with no one strategy applying universally across taxa. In this study we carried out the first genetic assessment of the western painted turtle (Chrysemys picta bellii) at its northern periphery in British Columbia (BC), Canada, using mitochondrial DNA haplotypic and microsatellite genotypic data to examine population structure and demographic history. We compared the application of evolutionarily significant unit and management unit criteria with Canadian designatable unit guidelines to determine appropriate conservation units. Our results show that BC western painted turtles form a single evolutionarily significant unit, with each occupied site constituting a separate management unit. In contrast, there is evidence for six discrete designatable units. Patterns of genetic variation in BC western painted turtles indicate that the conservation of each region is important to maintaining regional diversity and evolutionary novelty in this widespread species.  相似文献   

17.
“Beyond GDP” initiatives flag the limits of the quantitative indicators of progress currently used for governance. Focusing on the quality assessment of quantitative information used for governance, we use some of the conceptual tools of theoretical ecology and evolutionary biology in order to identify the pre-analytical choices that determine the usefulness and pertinence of a model. Starting from the definition of a model as a formal representation of a specific and necessarily subjective observation, we show that the production of indicators is the final result of a series of decisions on what to observe and how. These choices, in turn, depend on the narrative, or set of narratives, adopted. Narratives provide causality and context to knowledge claims and are needed to select the indicators to be used for policy. Moving beyond the GDP debate requires reflexivity, that is, awareness of the key role that pre-analytical choices play in the definition of both the relevance of the chosen perceptions and narratives (determined by the normative stands of different actors – who defines wellbeing?), and the usefulness of the chosen models and data (determined by the pertinence of the resulting representation – how to measure wellbeing?). Reflexivity is essential in order to take into account the purposes for which different indicators were created and to define new purposes for the “beyond GDP” indicators.  相似文献   

18.
A fundamental question in biology is the following: what is the time scale that is needed for evolutionary innovations? There are many results that characterize single steps in terms of the fixation time of new mutants arising in populations of certain size and structure. But here we ask a different question, which is concerned with the much longer time scale of evolutionary trajectories: how long does it take for a population exploring a fitness landscape to find target sequences that encode new biological functions? Our key variable is the length, of the genetic sequence that undergoes adaptation. In computer science there is a crucial distinction between problems that require algorithms which take polynomial or exponential time. The latter are considered to be intractable. Here we develop a theoretical approach that allows us to estimate the time of evolution as function of We show that adaptation on many fitness landscapes takes time that is exponential in even if there are broad selection gradients and many targets uniformly distributed in sequence space. These negative results lead us to search for specific mechanisms that allow evolution to work on polynomial time scales. We study a regeneration process and show that it enables evolution to work in polynomial time.  相似文献   

19.
The central rôle of energy in all life processes has led to the development of numerous hypotheses, conjectures and theories on the relationships between thermodynamics and ecological processes. In this paper we examine the theoretical and empirical support for these developments, and in particular for the widely published set of thermodynamic conjectures developed by H.T. Odum, in which the maximum power principle is put forward as a generic feature of evolution in ecosystems. Although they are widely used, we argue that many of the ecological studies that have adopted the ideas encapsulated in Odum's work have done so without being aware of some of the fundamental problems underlying this approach. We discuss alternative ways in which a general available-work concept could be constructed for use as a numeraire in an energy-centered ecological theory or paradigm. In so doing, we examine what is meant by material accessibility and energy stocks and flows with respect to traditional food web and food chain theories, and relate these to results from the evolutionary dynamics of ecosystems. We conclude that the various forms and uses of energy bound up in essential ecosystem processes present a formidable obstacle to obtaining an operational definition of a general, aggregated available-work concept, a prerequisite for the systems approach of Odum and others. We also show that the prototypical derivations of the maximum power principle, and its interpretation, are contradicted on many scales both by empirical data and models, thereby invalidating the maximum power principle as a general principle of ecological evolution. The conclusions point to the fundamental problem of trying to describe ecosystems in a framework which has a one-dimensional currency.  相似文献   

20.
于黎  张亚平 《动物学研究》2006,27(6):657-665
追溯生物界不同生物类型的起源及进化关系,即重建生物类群的系统发育树是进化生物学领域中一个十分重要的内容。食肉目哺乳动物位于食物链顶端,很多成员不仅在我国野生动物保护工作中占有重要地位,而且还是研究动物适应性进化遗传机制的重要模式生物。因而,食肉目物种作为物种资源中的一个重要类群,其系统发育学一直是国内外研究的热门课题。构建可靠的食肉目分子系统树,无疑将具有重要的进化理论意义和保护生物学价值。鉴于目前食肉目各科间系统发育关系仍然处于“广泛争论”的状态,本文将针对食肉目科水平上的系统发育学研究进展,包括来自于形态学特征、细胞学及分子生物学方面的证据,做简要概述,并提出目前研究中存在的问题。这对今后食肉目系统发育方面的进一步研究工作具有指导意义,并为以该类群作为模式生物开展适应性进化研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号