首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The functional and evolutionary significance of highly repetitive, simple sequence (satellite) DNA is analysed by examining available information on the patterns of variation of heterochromatin and cloned satellites among newts (family Salamandridae), and particularly species of the European genus Triturus. This information is used to develop a model linking evolutionary changes in satellite DNAs and chromosome structure. In this model, satellites accumulate initially in large tandem blocks around centromeres of some or all of the chromosomes, mainly by repeated chromosomal exchanges in these regions. Centromeric blocks later become broken up and dispersed by small, random chromosome rearrangements in these regions. They are dispersed first to pericentric locations and then gradually more distally into the chromosome arms and telomeres. Dispersal of a particular satellite is accompanied by changes in sequence structure (for example, base substitutions, deletions, etc.) and a corresponding decrease in its detectability at either the molecular or cytological level. On the basis of this model, observed satellites in newt species may be classified as 'old', 'young', or of 'intermediate' phylogenetic age. The functions and effects of satellite DNA and heterochromatin at the cellular and organismal levels are also discussed. It is suggested that satellite DNA may have an impact on cell proliferation through the effect of late-replicating satellite-rich heterochromatin on the duration of S-phase of the cell cycle. It is argued that even small alterations in cell cycle time due to changes in heterochromatin amount may have magnified effects on organismal growth that may be of adaptive significance.  相似文献   

2.
Mitotic metaphase chromosomes of Silene latifolia (white campion) and Silene dioica (red campion) were studied and no substantial differences between the conventional karyotypes of these two species were detected. The classification of chromosomes into three distinct groups proposed for S. latifolia by Ciupercescu and colleagues was considered and discussed. Additionally, a new small satellite on the shorter arm of homobrachial chromosome 5 was found. Giemsa C-banded chromosomes of the two analysed species show many fixed and polymorphic heterochromatic bands, mainly distally and centromerically located. Our C-banding studies provided an opportunity to better characterize the sex chromosomes and some autosome types, and to detect differences between the two Silene karyotypes. It was shown that S. latifolia possesses a larger amount of polymorphic heterochromatin, especially of the centromeric type. The two Silene sex chromosomes are easily distinguishable not only by length or DNA amount differences but also by their Giemsa C-banding patterns. All Y chromosomes invariably show only one distally located band, and no other fixed or polymorphic bands on this chromosome were observed in either species. The X chromosomes possess two terminally located fixed bands, and some S. latifolia X chromosomes also have an extra-centric segment of variable length. The heterochromatin amount and distribution revealed by our Giemsa C-banding studies provide a clue to the problem of sex chromosome and karyotype evolution in these two closely related dioecious Silene species.  相似文献   

3.
William S. Modi 《Chromosoma》1993,102(7):484-490
A novel satellite DNA family (called MSAT-2570) was isolated and characterized from the rodent Microtus chrotorrhinus. With a length of 2,570 bp the repeat unit is among the largest yet reported in mammals and comprises a series of short direct and inverted repeats. These repeat motifs may prevent nucleosome formation or represent an endless source of genetic variation. Restriction enzyme digestion using the two pairs of isoschizomers HpaII/MspI and MboI/Sau3AI demonstrated tissue specific differences in satellite DNA methylation that may reflect variable chromatin conformation or differences in patterns of gene expression. The sex chromosomes of M. chrotorrhinus are unusually large in size among mammals, comprising 15%–20% of the karyotype and containing large blocks of heterochromatin. In situ hybridization of the satellite DNa revealed chromosomal localization predominantly to sex chromosome heterochromatin. A survey of related rodents including three congeneric species also with giant sized sex chromosomes demonstrated that MSAT-2570 is present only in the genome of M. chrotorrhinus. However, another previously reported satellite DNA also isolated from M. chrotorrhinus has been shown to reside on sex chromosome heterochromatin in one of the other three species, indicating that these giant blocks of heterochromatin are complex in structure and comprise multiple, unrelatined satellite DNA families.  相似文献   

4.
The chromosomes of the rare South American marsupial frogs Gastrotheca walkeri and G. ovifera were extensively reexamined with various banding techniques. The karyotypes of both species are distinguished by a new category of XY female symbol /XX male symbol female sex chromosomes. The unusual Y chromosomes are characterized by containing the least amount of constitutive heterochromatin in the karyotypes. This is in contrast to all previously known amphibian Y chromosomes and does not fit the evolutionary model of early XY differentiation in vertebrates. In male meiosis, the heteromorphic XY chromosomes of both species still exhibit the same pairing configurations as the autosomes. DNA flow cytometric measurements show the nuclear DNA amount of G. walkeri to be 10.90 pg. The significance of the XY/XX sex chromosomes of these marsupial frogs, the various classes of constitutive heterochromatin detected, and the data obtained from meiotic analyses are discussed in detail.  相似文献   

5.
The use of in situ restriction endonuclease (RE) (which cleaves DNA at specific sequences) digestion has proven to be a useful technique in improving the dissection of constitutive heterochromatin (CH), and in the understanding of the CH evolution in different genomes. In the present work we describe in detail the CH of the three Rodentia species, Cricetus cricetus, Peromyscus eremicus (family Cricetidae) and Praomys tullbergi (family Muridae) using a panel of seven REs followed by C-banding. Comparison of the amount, distribution and molecular nature of C-positive heterochromatin revealed molecular heterogeneity in the heterochromatin of the three species. The large number of subclasses of CH identified in Praomys tullbergi chromosomes indicated that the karyotype of this species is the more derived when compared with the other two genomes analyzed, probably originated by a great number of complex chromosomal rearrangements. The high level of sequence heterogeneity identified in the CH of the three genomes suggests the coexistence of different satellite DNA families, or variants of these families in these genomes.  相似文献   

6.
Peripheral blood lymphocyte metaphase chromosomes of three Bovoidean species have been studied using Quinacrine fluorescence and Giemsa banding techniques to give Q-, G-, and C-banding patterns. Q- and G-banding characteristics, coupled with chromosome length, enabled all of the chromosomes in each of the chromosome complements to be clearly distinguished, although some difficulties were encountered with the very smallest chromosomes. A comparison of G-banding patterns between the species revealed a remarkable degree of homology of banding patterns. Each of the 23 different acrocentric autosomes of the domestic sheep (2n=54) was represented by an identical chromosome in the goat (2n=60) and the arms of the 3 pairs of sheep metacentric autosomes were identical matches with the remaining 6 goat acrocentrics. A similar interspecies homology was evident for all but two of the autosomes in the ox (2n=60). This homology between sheep metacentric and goat acrocentric elements confirms a previously suggested Robertsonian variation. The close homology in G-banding patterns between these related species indicates that the banding patterns are evolutionarily conservative and may be a useful guide in assessing interspecific relationships. —The centromeric heterochromatin in the autosomes of the three species was found to show little or no Q-or G-staining, in contrast to the sex chromosomes. This lack of centromeric staining with the G-technique (ASG) contrasts markedly with results obtained with other mammalian species. However, with the C-banding technique these regions show a normal intense Giemsa stain and the C-bands in the sex chromosomes are inconspicuous. The amount of centromeric heterochromatin in the sheep metacentric chromosomes is considerable less than in the acrocentric autosomes or in a newly derived metacentric element discovered in a goat. It is suggested that the pale G-staining of the centromeric heterochromatin in these species might be related to the presence of G-Crich satellite DNA.  相似文献   

7.
The C-banding patterns in the chromosomes ofMicrotus oeconomus, M. arvalis andM. ochrogaster demonstrate differences in the amount and distribution of heterochromatin. Autosomal centromeric heterochromatin appears as conspicuous blocks or as small dots, and in several chromosomes no heterochromatin was detected; interstitial heterochromatin was observed in one autosome pair ofM. ochrogaster. The sex chromosomes also demonstrate differences in the C-banding pattern. InM. oeconomus, the X chromosome exhibits a block of centromeric heterochromatin which is larger than that of the autosomes; this characteristic helps to recognize the X chromosomes in the karyotype. InM. arvalis no heterochromatin was appreciated in the sex chromosomes. The Y chromosomes ofM. ochrogaster andM. oeconomus are entirely heterochromatic. During male meiosis heterochromatin shows condensation, association and chiasma prevention; the sex chromosomes pair end to end in the three species. At pairing, the Y chromosome ofM. arvalis is despiralized, but it appears condensed again shortly before separation of the bivalent.  相似文献   

8.
M. Schmid 《Chromosoma》1978,66(4):361-388
The distribution and quantity of constitutive heterochromatin and of the nucleolus organizer regions (NORs) on the chromosomes of 22 species of bufonids and hylids (Amphibia, Anura) was investigated. Three different kinds of constitutive heterochromatin were found and the frequency of brightly fluorescing heterochromatic regions was remarkably high. On almost all chromosomes there is centric and telomeric heterochromatin. Quantitative estimates of heterochromatin demonstrate that large DNA differences among closely related species can not be attributed to differing quantities of constitutive heterochromatin. In all species investigated, only one homologous pair of NORs was found, which lies preferentially in the proximal and interstitial segments of the long chromosome arms. The NORs are always associated with constitutive heterochromatin on both sides. The size variability between homologous NORs is very high. In the euchromatic regions of the metaphase chromosomes, neither Q- nor G-bands can be demonstrated; this can be attributed to an extremely strong contraction of the anuran chromosomes. On the basis of these results various mechanism of the chromosomal evolution in Anura are discussed.  相似文献   

9.
Nuclear DNA variation in Lathyrus   总被引:4,自引:2,他引:4  
In the genus Lathyrus the divergence and evolution of species was accompanied by large scale changes in nuclear DNA amount. All the species are diploids with 14 chromosomes so that the DNA changes were the result of amplification or deletion of segments within chromosomes. Our evidence indicates that the quantitative changes involve mainly the repetitive, as distinct from the non-repetitive fraction of the chromosomal DNA and, on a cytological basis, mainly heterochromatin in contrast to euchromatin. There is an element of discontinuity in the distribution of DNA amounts among species which suggests that the DNA variation results from a series of separate, spasmodic events. The discontinuities may be viewed, also, as steady states from the standpoint of genetic balance and biological fitness.  相似文献   

10.
Fish belonging to the genus Hypostomus are known for exhibiting a striking diversity in its karyotype structure, however the knowledge concerning the distribution patterns of heterochromatin and location of repetitive DNA sequences in the karyotypes is still limited. Aiming a better understanding of the chromosomal organization in this group, we analyzed three sympatric species of Hypostomus collected in the Hortelã stream, a component of the Paranapanema River basin, Botucatu/SP/Brazil. The analyses involved the cytogenetic characterization and chromosomal mapping of repetitive sequences and intra/interspecific comparisons using sequences of the cytochrome C oxidase subunit I. The results revealed that H. ancistroides presents a karyotype with 2n = 68 chromosomes, H. strigaticeps 2n = 72 chromosomes, and H. nigromaculatus 2n = 76 chromosomes. In addition to differences found in the diploid number, it was also observed variations in karyotypic formulae, amount of constitutive heterochromatin, and location of nucleolus organizer regions. The cytogenetic mapping of 5S and 18S rDNA, as well as of the H3 histone gene, disclosed a differential dispersion process among the three species. In some cases the Rex1 transposable element showed to be co-located with 5S rDNA sites. The molecular analyses support the cytogenetic data and represent an additional tool for the characterization of the analyzed species. The results evidenced that chromosomal variations are not restricted to differences in diploid number or karyotypic macrostructure in the genus Hypostomus, indicating that events such as transposition of heterochromatin and rDNA segments may participate in the differentiation process occurred in these species.  相似文献   

11.
The karyotype of experimentally obtained hybrids between the two closely related species Glyptotendipes pallens and Glyptotendipes glaucus is described. Hybridization was successful in one direction only ( G. pallens ♂ x G. glaucus ♀). The polytene chromosomes AB and EF of the hybrid show a more or less intimate pairing throughout their length. In the chromosomes CD in which an inversion occurs the characteristic loop is formed. The homologues of chromosome G are almost completely asynaptic. The localization of centromere heterochromatin was also studied. Centromere heterochromatin as well as intercalary heterochromatin could be observed in all chromosomes. By C banding analyses it could be shown that G. pallens has a telomeric chromosome G while in G. glaucus it is acrocentric. According to karyotype similarity it can be assumed that these two species have quite recently derived from a common ancestor since they still share much of their genomic organization. On the Black Sea coast (southeast part of Bulgaria) a natural hybridization zone between the sympatric species G. pallens and G. glaucus has been detected. The idea that hybridization between the two species might finally proceed to the formation of a new species by hybrid origin and introgression is discussed.  相似文献   

12.
There is approximately a doubling of the total nuclear DNA between the 8 Lathyrus species and there are significant differences in the amounts of DNA in euchromatin and heterochromatin. Between the 8 species chiasma frequency and total nuclear DNA are not correlated but within complements it is positively correlated with the amount of DNA in the chromosomes. There is no significant correlation between chiasma frequency and euchromatin DNA nor between chiasma frequency and heterochromatin DNA among species, but among chromosomes, as with total DNA, it is positively correlated with euchromatin DNA and heterochromatin DNA. Results show that despite the large differences in DNA amounts between species there are genomic constraints underlying the frequency and distribution of chiasmata in the chromosome complements.  相似文献   

13.
We report a nonhistone antigen to be cell type-specifically associated with constitutive heterochromatin. Human autoantibodies were used to analyze by indirect immunofluorescence the pattern of association of the antigenic protein with the heterochromatin of murine chromosomes, as well as those of other representative vertebrate species. The evolutionary stability of its cell type-specific distribution pattern suggests that this nonhistone antigen plays an important role in the structure and/or function of constitutive heterochromatin. In mitotic chromosomes, the antigen was localized to discrete granules scattered throughout the entire chromatin. These structural elements may function as condensation centers, with each granule representing an aggregation of anchoring complexes for the chromatin loops.  相似文献   

14.
Wang Y  Tang X  Cheng Z  Mueller L  Giovannoni J  Tanksley SD 《Genetics》2006,172(4):2529-2540
Eleven sequenced BACs were annotated and localized via FISH to tomato pachytene chromosomes providing the first global insights into the compositional differences of euchromatin and pericentromeric heterochromatin in this model dicot species. The results indicate that tomato euchromatin has a gene density (6.7 kb/gene) similar to that of Arabidopsis and rice. Thus, while the euchromatin comprises only 25% of the tomato nuclear DNA, it is sufficient to account for approximately 90% of the estimated 38,000 nontransposon genes that compose the tomato genome. Moreover, euchromatic BACs were largely devoid of transposons or other repetitive elements. In contrast, BACs assigned to the pericentromeric heterochromatin had a gene density 10-100 times lower than that of the euchromatin and are heavily populated by retrotransposons preferential to the heterochromatin-the most abundant transposons belonging to the Jinling Ty3/gypsy-like retrotransposon family. Jinling elements are highly methylated and rarely transcribed. Nonetheless, they have spread throughout the pericentromeric heterochromatin in tomato and wild tomato species fairly recently-well after tomato diverged from potato and other related solanaceous species. The implications of these findings on evolution and on sequencing the genomes of tomato and other solanaceous species are discussed.  相似文献   

15.
A cytogenetic analysis was performed in experimental hybrids between species of Chagas disease transmitting bugs with remarkable differences in the amount and distribution of heterochromatin. Using C-banding technique, we identified the parental species chromosomes and analysed the meiotic behaviour in the male hybrids between Triatoma platensis and T. infestans, T. platensis and T. delpontei, and T. infestans and T. rubrovaria. The two former hybrids have an entirely normal meiotic behaviour despite the extensive differences in C-banded karyotypes observed in the parental species, indicating that heterochromatin differences between homeologous chromosomes are not a barrier that influences meiotic synapsis and recombination. On the contrary, the experimental hybrids between T. infestans and T. rubrovaria show failures in pairing of homeologous chromosomes that lead to the production of abnormal spermatids and hybrid sterility. Our data suggest that karyotypic repatterning within triatomines has involved at least two different pathways. Among closely related species, chromosomal changes have largely involved addition or deletion of heterochromatic regions. In more distant species, chromosomal rearrangements (i.e. inversions and translocations) have also arisen. Hybridisation data also allow to hypothesize about the origin and divergence of this taxonomic group, as well as the mechanisms that maintain species isolation.  相似文献   

16.
C-banding, base-specific fluorochrome staining (CMA3/DA/DAPI), and comparative genomic hybridization (CGH) were used to analyze the constitutive heterochromatin in two Israeli Spalax species, S. galili (2n = 52) and S. judai (2n = 60). It was shown that C-positive centromeric heterochromatin and some telomeric sites comprise GC-rich DNA sequences in both species. Comparative genomic in situ hybridization revealed slight qualitative differences in highly repetitive sequences in the two Spalax species. Eight acrocentric pairs in S. judai that are involved in Robertsonian rearrangements, possessed composite heterochromatin with a preference of S. judai highly repetitive sequences in the proximal region. Heterochromatin of the sex chromosomes, two biarmed homologous pairs (4 and 5) in both species, and acrocentric chromosomes from the group with a variable centromere position in S. judai was entirely species-specific. The high level of homology in the composition of heterochromatin may relate to the recent divergence of Israeli Spalax. Interspecies heterochromatin differences are discussed in the context of possible mechanisms in the Spalax chromosome evolution.  相似文献   

17.
Baldev K. Vig 《Genetics》1982,102(4):795-806
The late metaphase-early anaphase cells from various tissues of male Mus musculus, M. poschiavinus, M. spretus, M. castaneus, female and male Bos taurus (cattle) and female Myopus schisticolor (wood lemming) were analyzed for centromeres that showed separation into two daughter centromeres and those that did not show such separation. In all strains and species of mouse the Y chromosome is the first one to separate, as is the X or Y in the cattle. These sex chromosomes are devoid of constitutive heterochromatin, whereas all autosomes in these species carry detectable quantities. In cattle, the late replicating X chromosome appears to separate later than the active X. In the wood lemming the three pairs of autosomes with the least amount of centromeric constitutive heterochromatin separate first. These are followed by the separation of seven pairs of autosomes carrying medium amounts of constitutive heterochromatin. Five pairs of autosomes with the largest amounts of constitutive heterochromatin are the last in the sequence of separation. The sex chromosomes with medium amounts of constitutive heterochromatin around the centromere, and a very large amount of distal heterochromatin, separate among the very late ones but are not the last. These observations assign a specific role to centromeric constitutive heterochromatin and also indicate that nonproximal heterochromatin does not exert control over the sequence in which the centromeres in the genome separate. It appears that qualitative differences among various types of constitutive heterochromatin are as important as quantitative differences in controlling the separation of centromeres.  相似文献   

18.
Karyotypes of more than 120 species of 33 genera of the Palearctic blackflies (Simuliidae) were studied on squashed acetoorcein stained preparations of salivary gland polytene chromosomes in larvae. In the course of evolution of the family, a significant complication was noticed in the morphology of centromere regions of polytene chromosomes. In plesiomorphic species, centromeres are not pronounced morphologically and the general picture does not differ from that of other bands and interbands of the polytene chromosome. In species with apomorphic characters, a distinct precentromeric heterochromatin appears, whose manifestation is responsible for morphological diversity of centromere zones in polytene chromosomes. They are represented either by conspicuous slightly thickened heterochromatic bands or by large amplified blocks of heterochromatin or puff-like structure, being considerably extended as a result of despiralization of precentromeric heterochromatin. There are species, which more commonly lack chromocentre and their chromosomes are separated. Some other species have ectopic contacts between pricentromeric heterochromatin. In some species, this heterochromatin is organized as a compact chromocentre. This has been found only in representatives of southern latitudes, most frequently in evolutionarily young species with narrow specialization.  相似文献   

19.
The mitotic chromosomes of the Australian ground frogs Mixophyes fasciolatus and M. schevilli were analyzed by means of banding techniques and restriction endonuclease digestions. Chromosomal differentiation in these two species occurred exclusively by considerable changes in the amount of telomeric and centromeric heterochromatin, whereas the sizes and locations of interstitial heterochromatic regions, the sizes of all euchromatic segments as well as the positions of centromeres remained nearly identical during karyotype evolution. The major heterochromatic regions in the karyotypes of M. fasciolatus and M. schevilli amount to 30.2% and 20.7%, respectively. They consist of AT base pair-rich repetitive DNA sequences that are brightly labeled by AT-specific fluorochromes and display quenched fluorescence after staining with GC-specific fluorochromes. The heterochromatic regions can be differentiated by treatment of metaphase chromosomes and interphase cell nuclei with various restriction enzymes which either disclose the complete set of C-band patterns in the karyotypes of both species, or else reveal several subsets of these C-bands.  相似文献   

20.
DNA amounts and chromatin compactness in Vicia   总被引:1,自引:1,他引:0  
2C DNA amounts and areas of chromatin were determined with a M 86 Vickers microdensitometer in 56 species of Vicia (x=5, 6, 7), exhibiting large differences in chromosome size. There were significant differences between the species both in DNA content and chromatin area. The nuclear DNA amounts range from 3.85 to 27.07 pg. DNA distribution appears discontinuous; species cluster into distinct groups and the average nuclear DNA amount separating each successive pair is approximately the same (2.23 pg). The compaction of DNA in interphase nuclei increases with increasing DNA amount, which is, at least partly, due to a disproportionate increase in the heterochromatin relative to the euchromatin component of DNA. Comparisons of DNA readings at various stages of the cell cycle show that the DNA amounts are underestimated by microdensitometry in nuclei with high DNA density. Estimation of relative DNA content and area of individual chromosomes were made in twelve species. The results show that changes in DNA content within chromosomes affect the degree of metaphase coiling in an orderly fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号