首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inhibitor of factor XIIa has been purified to homogeneity from bovine plasma. The purification steps included precipitation of contaminating proteins with polyethylene glycol and chromatography on DEAE-cellulose, Affi-Gel blue, and immobilized wheat germ lectin. The apparent molecular weight of the XIIa inhibitor (called INH1) was 85,000, reduced, and 92,000, nonreduced, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The extinction coefficient (E0.1%(280)) of INH1 is 1.3, and the protein contains 17.7% carbohydrate. Purified antibody to INH1 raised in either rabbits or chickens formed a precipitin line of identity with purified INH1 and a component of bovine plasma, but there was no reaction with purified human inhibitors or with any component of human plasma. INH1 inhibits bovine and human XIIa, bovine and human C1-esterase, and human kallikrein, but does not inhibit bovine kallikrein, bovine trypsin, human plasmin, or human thrombin. This activity is similar to that of C1-inhibitor but different from antithrombin III, alpha 2-antiplasmin, or alpha 1-protease inhibitor. INH1 at a physiological concentration (0.47 microM) causes rapid inactivation of XIIa. The two molecules react in a 1:1 stoichiometry with a second-order rate constant of 1.23 X 10(6) M-1 min-1.  相似文献   

2.
A L Cronlund  P N Walsh 《Biochemistry》1992,31(6):1685-1694
A low molecular weight platelet inhibitor of factor XIa (PIXI) has been purified 250-fold from releasates of washed and stimulated human platelets. Molecular weight estimates of 8400 and 8500 were determined by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, although a second band of Mr 5000 was present upon electrophoresis. The inhibitor does not appear to be one of the platelet-specific, heparin-binding proteins, since it neither bound to nor was affected by heparin. An amount of PIXI which inhibited by 50% factor XIa cleavage of the chromogenic substrate S2366 (Pyr-Glu-Pro-Arg-pNA-2H2O) only slightly inhibited (5-9%) factor XIIa, plasma kallikrein, plasmin, and activated protein C and did not inhibit factor Xa, thrombin, tPA, or trypsin, suggesting specificity for factor XIa. Kinetic analyses of the effect of PIXI on factor XIa activity demonstrated mixed-type, noncompetitive inhibition of S2366 cleavage and of factor IX activation with Ki's of 7 x 10(-8) and 3.8 x 10(-9) M, respectively. Immunoblot analysis showed that PIXI is not the inhibitory domain of protease nexin II, a potent inhibitor of factor XIa also secreted from platelets. Amino acid analysis showed that PIXI has no cysteine residues and, therefore, is not a Kunitz-type inhibitor. PIXI can prevent stable complex formation between alpha 1-protease inhibitor and factor XIa light chain as demonstrated by SDS-polyacrylamide gel electrophoresis. The inhibition by PIXI of factor XIa-catalyzed activation of factor IX and its capacity to prevent factor XIa inactivation by alpha 1-protease inhibitor, combined with the specificity of PIXI for factor XIa among serine proteases found in blood, suggest a role for PIXI in the regulation of intrinsic coagulation.  相似文献   

3.
The breakdown of beta-casein (caseinolytic activity) by the bovine pituitary multicatalytic proteinase complex (MPC) is initiated by a fourth active site different from the previously described chymotrypsin-like activity (cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide, where Cbz is benzyloxycarbonyl), trypsin-like activity (cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide), and peptidylglutamyl peptide bond-hydrolyzing (PGP) activity (cleavage of Cbz-Leu-Leu-Glu-2-naphthylamide) (Yu, B., Pereira, M. E., and Wilk, S. (1991) J. Biol. Chem. 266, 17396-17400). 3,4-Dichloroisocoumarin, a serine proteinase inhibitor, stimulated the caseinolytic activity of bovine pituitary or lens MPC, 3-18-fold under conditions under which the other three catalytic activities were inactivated. Addition of hydroxylamine to the modified enzyme did not reverse the effects of the inhibitor. A form of the proteinase exhibiting only 2-4% of control chymotrypsin-like, trypsin-like, and PGP activities degraded beta-casein with no accumulation of intermediate peptides. 3,4-Dichloroisocoumarin, by reacting with the chymotrypsin-like, trypsin-like, and/or PGP-active sites, may promote a conformational change of MPC, rendering the caseinolytic active site accessible to the substrate. Once bound to the active site, beta-casein is rapidly degraded either by the caseinolytic component itself or by a cooperative interaction with catalytic centers that are not affected by the serine proteinase inhibitor. These results imply that the caseinolytic component does not belong to the class of serine proteinases. Other proteins tested were not degraded by the 3,4-dichloroisocoumarin-treated enzyme, suggesting that the conformation of beta-casein may be more adequate for degradation by the caseinolytic component.  相似文献   

4.
The initiation of coagulation results from the activation of factor X by an enzyme complex (Xase) composed of the trypsin-like serine proteinase, factor VIIa, bound to tissue factor (TF) on phospholipid membranes. We have investigated the basis for the protein substrate specificity of Xase using TF reconstituted into vesicles of phosphatidylcholine, phosphatidylserine, or pure phosphatidylcholine. We show that occupation of the active site of VIIa within Xase by a reversible inhibitor or an alternate peptidyl substrate is sufficient to exclude substrate interactions at the active site but does not alter the affinity of Xase for factor X. This is evident as classical competitive inhibition of peptidyl substrate cleavage but as classical noncompetitive inhibition of factor X activation by active site-directed ligands. This implies that the productive recognition of factor X by Xase arises from a multistep reaction requiring an initial interaction at sites on the enzyme complex distinct from the active site (exosites), followed by active site interactions and bond cleavage. Exosite interactions determine protein substrate affinity, whereas the second binding step influences the maximum catalytic rate for the reaction. We also show that competitive inhibition can be achieved by interfering with exosite binding using factor X derivatives that are expected to have limited or abrogated interactions with the active site of VIIa within Xase. Thus, substrate interactions at exosites, sites removed from the active site of VIIa within the enzyme complex, determine affinity and binding specificity in the productive recognition of factor X by the VIIa-TF complex. This may represent a prevalent strategy through which distinctive protein substrate specificities are achieved by the homologous enzymes of coagulation.  相似文献   

5.
Tetrahydrolipstatin inhibits pancreatic lipase from several species, including man, with comparable potency. The lipase is progressively inactivated through the formation of a long-lived covalent intermediate, probably with a 1:1 stoichiometry. The lipase substrate triolein and also a boronic acid derivative, which is presumed to be a transition-state-form inhibitor, retard the rate of inactivation. Therefore, in all probability, tetrahydrolipstatin reacts with pancreatic lipase at, or near, the substrate binding or active site. Tetrahydrolipstatin is a selective inhibitor of lipase; other hydrolases tested were at least a thousand times less potently inhibited.  相似文献   

6.
Kinetic studies support the concept that protein substrate recognition by the prothrombinase complex of coagulation is achieved by interactions at extended macromolecular recognition sites (exosites), distinct from the active site of factor Xa within the complex. We have used this formal kinetic model and a monoclonal antibody directed against Xa (alphaBFX-2b) to investigate the contributions of surfaces on the proteinase to exosite-mediated protein substrate recognition by prothrombinase. alphaBFX-2b bound reversibly to a fluorescent derivative of factor Xa (K(d) = 17.1 +/- 5.6 nm) but had no effect on active site function of factor Xa or factor Xa saturably assembled into prothrombinase. In contrast, alphaBFX-2b was a slow, tight binding inhibitor of the cleavage of either prethrombin 2 or meizothrombin des-fragment 1 by prothrombinase (K(i)(*) = 0.55 +/- 0.05 nm). Thus, alphaBFX-2b binding to factor Xa within prothrombinase selectively leads to the inhibition of protein substrate cleavage without interfering with active site function. Inhibition kinetics could adequately be accounted for by a kinetic model in which prethrombin 2 and alphaBFX-2b bind in a mutually exclusive way to prothrombinase. These are properties expected of an exosite-directed inhibitor. The site(s) on factor Xa responsible for antibody binding were evaluated by identification of immunoreactive fragments following chemical digestion of human and bovine Xa and were further confirmed with a series of recombinantly expressed fragments. These approaches suggest that residues 82-91 and 102-116 in the proteinase domain contribute to alphaBFX-2b binding. The data establish this antibody as a prototypic exosite-directed inhibitor of prothrombinase and suggest that the occlusion of a surface on factor Xa, spatially removed from the active site, is sufficient to block exosite-dependent recognition of the protein substrate by prothrombinase.  相似文献   

7.
Rezaie AR 《Biochemistry》2002,41(40):12179-12185
Specific cleavage of factor V at several P1Arg sites is critical for maintenance of hemostasis. While cleavage by procoagulant proteinases fXa and thrombin activates the cofactor, its cleavage by the anticoagulant proteinase activated protein C (APC) inactivates it. Antithrombin (AT), a specific serpin inhibitor of both thrombin and factor Xa, but not APC, was used as a model system to investigate molecular determinants of APC specificity in the inactivation reaction. Two mutants were prepared in which the P2 or the P3-P3' residues of the reactive site loop of the serpin were replaced with the corresponding residues of the APC cleavage site in factor V spanning residues 504-509 (Asp(504)-Arg-Arg-Gly-Ile-Gln(509)). Kinetic analysis showed that the reactivities of mutants were impaired by approximately 2-3 orders of magnitude with both factor Xa and thrombin, but improved by approximately 2 orders of magnitude with APC. The saturable dependence of the observed first-order rate constants on the concentrations of AT in complex with approximately 70-saccharide high-affinity heparin revealed that changes in the reactivity of the 504-509 mutant with proteinases are primarily due to an effect in the second reaction step in which a noncovalent serpin-proteinase encounter complex is converted to a stable, covalent complex. These results suggest that the P3-P3' residues of the APC cleavage site in factor Va, particularly P2Arg, confer specificity for the anticoagulant proteinase by improving the reactivity of the catalytic pocket with the transition state of the substrate in the second step of the reaction.  相似文献   

8.
Role of heparin and heparinlike molecules in thrombosis and atherosclerosis   总被引:5,自引:0,他引:5  
Antithrombin is a protease inhibitor that neutralizes the activity of the serine proteases of the coagulation cascade, such as factors IXa, Xa, XIa, XIIa, and thrombin by forming a 1:1 stoichiometric complex between enzyme and inhibitor via a reactive site (arginine)-active center (serine interaction). Heparin binds to lysyl residues on antithrombin and accelerates the rate of complex formation. Studies of the binding parameters and kinetic characteristics of the heparin-antithrombin-hemostatic enzyme interactions have revealed that binding of heparin to antithrombin is responsible for a approximately 1000-fold acceleration of the thrombin-antithrombin or factor IXa-antithrombin and factor Xa-antithrombin interactions (allosteric effect). The reactions between free thrombin or free factor IXa and heparin provide an additional 4- to 15-fold enhancement in the rate of these processes (approximation effect) and account for 1-2% of the total rate of enhancement. It has been shown that commercial heparin is composed of anticoagulantly active and anticoagulantly inactive species. The anticoagulantly active mucopolysaccharide contains a unique antithrombin-binding site. Anticoagulantly inactive heparin does not possess this structure and does not bind to the protease inhibitor. Anticoagulantly active heparin also contains a critical region required for the acceleration of the various enzyme-inhibitor interactions. The two different domains of the heparin molecule interact with separate areas of antithrombin and induce distinct conformational transitions within the protease inhibitor. Anticoagulantly active heparinlike molecules (most likely a heparan sulfate with an appropriate sequence for anticoagulant activity) are found on the luminal surface of the endothelium. This heparinlike substance appears to alter the conformation of antithrombin in a manner virtually identical to that of commercial heparin. Both anticoagulantly active heparin and inactive heparin are able to suppress smooth muscle cell proliferation in vitro and in vivo and can reverse the effects of mitogenic factors such as platelet-derived growth factor. Furthermore, it has been shown that bovine aortic endothelial cells produce heparinlike molecules with growth inhibitory potency.  相似文献   

9.
The prothrombinase complex, composed of the proteinase, factor Xa, bound to factor Va on membranes, catalyzes thrombin formation by the specific and ordered proteolysis of prothrombin at Arg(323)-Ile(324), followed by cleavage at Arg(274)-Thr(275). We have used a fluorescent derivative of meizothrombin des fragment 1 (mIIaDeltaF1) as a substrate analog to assess the mechanism of substrate recognition in the second half-reaction of bovine prothrombin activation. Cleavage of mIIaDeltaF1 exhibits pseudo-first order kinetics regardless of the substrate concentration relative to K(m). This phenomenon arises from competitive product inhibition by thrombin, which binds to prothrombinase with exactly the same affinity as mIIaDeltaF1. As thrombin is known to bind to an exosite on prothrombinase, initial interactions at an exosite likely play a role in the enzyme-substrate interaction. Occupation of the active site of prothrombinase by a reversible inhibitor does not exclude the binding of mIIaDeltaF1 to the enzyme. Specific recognition of mIIaDeltaF1 is achieved through an initial bimolecular reaction with an enzymic exosite, followed by an active site docking step in an intramolecular reaction prior to bond cleavage. By alternate substrate studies, we have resolved the contributions of the individual binding steps to substrate affinity and catalysis. This pathway for substrate binding is identical to that previously determined with a substrate analog for the first half-reaction of prothrombin activation. We show that differences in the observed kinetic constants for the two cleavage reactions arise entirely from differences in the inferred equilibrium constant for the intramolecular binding step that permits elements surrounding the scissile bond to dock at the active site of prothrombinase. Therefore, substrate specificity is achieved by binding interactions with an enzymic exosite that tethers the protein substrate to prothrombinase and directs cleavage at two spatially distinct scissile bonds.  相似文献   

10.
The binding of recombinant nematode anticoagulant protein c2 (NAPc2) to either factor X or Xa is a requisite step in the pathway for the potent inhibition of VIIa tissue factor. We have used NAPc2 as a tight binding probe of human Xa to investigate protein substrate recognition by the human prothrombinase complex. NAPc2 binds with high affinity (K(d) approximately 1 nm) to both X and Xa in a way that does not require or occlude the active site of the enzyme. In contrast, NAPc2 is a tight binding, competitive inhibitor of protein substrate cleavage by human Xa incorporated into prothrombinase with saturating concentrations of membranes and Va. By fluorescence binding studies we show that NAPc2 does not interfere with the assembly of human prothrombinase. These are properties expected of an inhibitor that blocks protein substrate recognition by targeting extended macromolecular recognition sites (exosites) on the enzyme complex. A weaker interaction (K(d) = 260-500 nm) observed between NAPc2 and bovine X was restored to a high affinity one in a recombinant chimeric bovine X derivative containing 25 residues from the COOH terminus of the proteinase domain of human X. This region implicated in binding NAPc2 is spatially adjacent to a site previously identified as a potential exosite. Despite the weaker interaction with bovine Xa, NAPc2 was a tight binding competitive inhibitor of protein substrate cleavage by bovine prothrombinase as well. Extended enzymic surfaces elucidated with exosite-directed probes, such as NAPc2, may define a unique region of factor Xa that is modulated following its assembly into prothrombinase and in turn determines the binding specificity of the enzyme complex for its protein substrate.  相似文献   

11.
Placental extracts contain inhibitors of human urinary urokinase. These extracts form a heterogeneous population of complexes with 125I-urokinase that are recognizable by changes in gel filtration profile and mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment with reducing agents eliminated the size heterogeneity without loss of activity, thereby allowing the placental inhibitor to be purified. Active inhibitor has been isolated in apparently homogeneous form after an eight-step procedure that included salt extraction, ammonium sulfate fractionation, column chromatography on CM-cellulose, DEAE-Sepharose, and hydroxylapatite, chromatofocusing, preparative gel electrophoresis, and hydrophobic chromatography. The purified inhibitor has Mr = 47,000. The inhibitor is relatively specific for plasminogen activators since it does not inhibit the action of plasmin, factor XIIa, plasma kallikrein, or thrombin. The inhibitor forms complexes with 1:1 stoichiometry that block the active sites of urokinase (but not prourokinase) and both one- and two-chain forms of tissue plasminogen activator. The stability of these complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggest that they are based on covalently bonded structures. Although both types of plasminogen activator are inhibited, the rate of interaction is significantly faster with urokinase, tissue plasminogen activator being inhibited less efficiently. The complexes formed can be dissociated by mild alkali or hydroxylamine, thereby regenerating both enzymes and inhibitor at their original molecular weights. The results suggest that the complexes are stabilized by ester-like bonds; these might involve the hydroxyl of serine at the active site of the proteases and a carboxyl group in the inhibitor.  相似文献   

12.
An anticoagulant factor with phospholipase A2 activity has been isolated from Vipera berus venom. Phospholipase activity was studied on platelet phospholipid and on brain cephalin. The venom factor showed a potent anticoagulant activity: 1 mug impaired the clotting of 1 ml of citrated recalcified platelet-poor plasma. The anticoagulant inhibited clotting by antagonism to phospholipid. The antagonism constant (Kan = 6.8-10(-9) M) demonstrated the high affinity of the inhibitor for phospholipid. As with other phospholipases A2, the venom factor was thermoresistant but very sensitive to photo-oxidation. Both activities (anticoagulant activity and phospholipase activity) were not markedly dissociated by either denaturation or neutralization processes. Slightly different curves of photo-oxidative inactivation of both activities suggested the presence, on the molecule, of two very close sites responsible for phospholipase and anticoagulant activities. The inhibitor effect on coagulation was independent of the hydrolysis process. In fact, lysoderivatives and fatty acids, resulting from complete hydrolysis with the venom factor, were as active as the native phospholipids. Moreover phospholipase A2 from other viperidae venom, which did not have anticoagulant activity, produced similarly active lysoderivatives. This showed that the cleavage of the beta-acyl bond does not interfere with the activity of phospholipid. A possible mechanism of clotting inhibition by the venom factor was proposed. Owing to its high affinity for phospholipid, the inhibitor would complex phospholipid at its protein binding site impairing the normal arrangement of coagulation protein factors and, consequently, their activation. The positive charges of the inhibitor (pI = 9.2) could bind with phosphoryl or carboxyl groups of phospholipid, making them unavailable for protein binding. The complex formation involves a loss of dissociating capacity of the enzyme towards its substrate. This required an additional interaction of the inhibitor with a coagulation protein factor. The inhibitor could be removed from the complex by specific antibodies, permitting recovery of normal phospholipid-protein interaction. The role of calcium in the complex has not yet been elucidated. This venom factor affords a useful tool for investigating the phospholipid-clotting protein interaction.  相似文献   

13.
G G Chang  R Y Hsu 《Biochemistry》1977,16(2):311-320
Malic enzyme from pigeon liver is alkylated by the substrate analogue bromopyruvate, resulting in the concomitant loss of its oxidative decarboxylase and oxalacetate decarboxylase activities, but not its ability to reduce alpha-keto acids. The inactivation of oxidative decarboxylase activity follows saturation kinetics, indicating the formation of an enzyme-bromopyruvate complex (K congruent to 8 mM) prior to alkylation. The inactivation is inhibited by metal ions and pyridine nucleotide cofactors. Protection of malic enzyme by the substrates L-malate and pyruvate and the inhibitors tartronate and oxalate requires the presence of the above cofactors, which tighten the binding of these carboxylic acids in accord with the ordered kinetic scheme (Hsu, R. Y., Lardy, H. A., and Cleland, W. W. (1967), J. Biol. Chem. 242, 5315-5322). Bromopyruvate is reduced to L-bromolactate by malic enzyme and is an effective inhibitor of L-malate and pyruvate in the overall reaction. The apparent kinetic constants (90 muM-0.8 mM) are one to two orders of magnitude lower than the half-saturation constant (K) of inactivation, indicating a similar tightening of bromopyruvate binding in the E-NADP+ (NADPH)-Mn2+ (Mg2+)-BP complexes. During alkylation, bromopyruvate interacts initially at the carboxylic acid substrate pocket of the active site, as indicated by the protective effect of substrates and the ability of this compound to form kinetically viable complexes with malic enzyme, particularly as a competitive inhibitor of pyruvate carboxylation with a Ki (90 muM) in the same order as its apparent Michaelis constant of 98 muM. Subsequent alkylation of a cysteinyl residue blocks the C-C bond cleavage step. The incorporation of radioactivity from [14C]bromopyruvate gives a half-site stoichiometry of two carboxyketomethyl residues per tetramer, indicating strong negative cooperativity between the four subunits of equal size, or alternatively the presence of structurally dissimilar active sites.  相似文献   

14.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.  相似文献   

15.
Plasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of tissue-type plasminogen activator (t-PA) in plasma, is a serine proteinase inhibitor (serpin) that forms a 1:1 stoichiometric complex with its target proteinase leading to the formation of a stable inactive complex. The active, inhibitory form of PAI-1 spontaneously converts to a latent form that can be reactivated by protein denaturants. In the present study we have isolated another molecular form of intact PAI-1 that, in contrast with active PAI-1, does not form stable complexes with t-PA but is cleaved at the P1-P1' bond (Arg346-Met347). Other serine proteinases, e.g. urokinase-type plasminogen activator and thrombin, also cleaved this "substrate" form of PAI-1. Fluorescence spectroscopy revealed conformational differences between the latent, active, and substrate forms of PAI-1. This observation confirms our hypothesis that the three functionally different forms of PAI-1 are the consequence of conformational transitions. Thus PAI-1 may occur in three interconvertible conformations: latent, inhibitor, and substrate PAI-1. The identification of two distinct conformations of PAI-1 which interact with their target protease either as an inhibitor or as a substrate is a previously unrecognized phenomenon among the serpins. Conversion of substrate PAI-1 to its inactive degradation product may constitute a pathway for the physiological regulation of PAI-1 activity.  相似文献   

16.
N-Acyl-beta-sultams are time-dependent, irreversible active site-directed inhibitors of Streptomyces R61 DD-peptidase. The rate of inactivation is first order with respect to beta-sultam concentration, and the second-order rate constants show a dependence on pH similar to that for the hydrolysis of a substrate. Inactivation is due to the formation of a stable 1:1 enzyme-inhibitor complex as a result of the active site serine being sulfonylated by the beta-sultam as shown by ESI-MS analysis and by X-ray crystallography. A striking feature of the sulfonyl enzyme is that the inhibitor is not bound to the oxyanion hole but interacts extensively with the "roof" of the active site where the Arg 285 is located.  相似文献   

17.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) hydrolyzes the Met(374)-Ser(375) (P3-P2), Glu(416)-Leu(417) and Ser(432)-Leu(433) peptide bonds in human alpha(2)-antiplasmin (alpha(2)-AP), the main physiological plasmin inhibitor. Cleavage is completely abolished in the presence of the MMP inhibitors EDTA or 1,10-phenanthroline. At enzyme/substrate ratio of 1:10 at 37 degrees C, alpha(2)-AP protein cleavage occurs with a half-life of 8 min, and is associated with rapid loss of inhibitory activity towards plasmin with a half-life of 5 min. alpha(2)-AP cleaved by MMP-3 does no longer form a stable complex with plasmin, as shown by SDS-PAGE, and does no longer interact with plasminogen, as shown by crossed immunoelectrophoresis with plasminogen added to the gel. These data are compatible with the removal of a COOH-terminal fragment containing the reactive site peptide bond and the plasmin(ogen)-binding site. In addition, MMP-3 cleaves the Pro(19)-Leu(20) peptide bond in alpha(2)-AP, thereby removing the fibrin-binding site from the inhibitor. A dysfunctional alpha(2)-AP variant (Ala-alpha(2)-AP or alpha(2)-AP Enschede), with an alanine insertion in the reactive site sequence converting it from a plasmin inhibitor into a substrate, was also efficiently cleaved by MMP-3 (half-life of 13 min at 37 degrees C and enzyme/substrate ratio of 1:10). Cleavage and inactivation of alpha(2)-AP by MMP-3 may constitute a mechanism favoring local plasmin-mediated proteolysis.  相似文献   

18.
Factor XI is the zymogen of a dimeric plasma protease, factor XIa, with two active sites. In solution, and during contact activation in plasma, conversion of factor XI to factor XIa proceeds through an intermediate with one active site (1/2-FXIa). Factor XIa and 1/2-FXIa activate the substrate factor IX, with similar kinetic parameters in purified and plasma systems. During hemostasis, factor IX is activated by factors XIa or VIIa, by cleavage of the peptide bonds after Arg145 and Arg180. Factor VIIa cleaves these bonds sequentially, with accumulation of factor IX alpha, an intermediate cleaved after Arg145. Factor XIa also cleaves factor IX preferentially after Arg145, but little intermediate is detected. It has been postulated that the two factor XIa active sites cleave both factor IX peptide bonds prior to releasing factor IX abeta. To test this, we examined cleavage of factor IX by four single active site factor XIa proteases. Little intermediate formation was detected with 1/2-FXIa, factor XIa with one inhibited active site, or a recombinant factor XIa monomer. However, factor IX alpha accumulated during activation by the factor XIa catalytic domain, demonstrating the importance of the factor XIa heavy chain. Fluorescence titration of active site-labeled factor XIa revealed a binding stoichiometry of 1.9 +/- 0.4 mol of factor IX/mol of factor XIa (Kd = 70 +/- 40 nm). The results indicate that two forms of activated factor XI are generated during coagulation, and that each half of a factor XIa dimer behaves as an independent enzyme with respect to factor IX.  相似文献   

19.
The light chain of human plasma kallikrein contains the enzymatic active site. The inactivation of kallikrein and of its isolated light chain by C1 inhibitor was investigated to assess the functional contributions of the heavy-chain region of kallikrein and of high molecular weight kininogen to this reaction. The second-order rate constants for the inactivation of kallikrein or its light chain were respectively 2.7 X 10(6) and 4.0 X 10(6) M -1 min -1. High molecular weight kininogen did not influence the rate of kallikrein inactivation. The nature of the complexes formed between kallikrein or its light chain and C1 inhibitor was studied by using sodium dodecyl sulfate (SDS) gradient polyacrylamide slab gel electrophoresis. Kallikrein as well as its light chain combined with C1 inhibitor to form stable stoichiometric complexes that were not dissociated by SDS and that exhibited apparent molecular weights (Mr's) of 185 000 and 135 000, respectively, on nonreduced SDS gels. Reduction of the kallikrein-C1 inhibitor complex gave a band at Mr 135 000 that comigrated with the complex seen for the light chain-C1 inhibitor complex. During the inactivation of both kallikrein and its light chain, a Mr 94 000 fragment of C1 inhibitor was formed which was unable to inactivate or bind kallikrein or its light chain. Kallikrein inactivated by diisopropyl phosphofluoridate did not form SDS-stable complexes with C1 inhibitor. These results demonstrate that the functional binding site for C1 inhibitor is localized in the light chain of kallikrein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
J W Harper  J C Powers 《Biochemistry》1985,24(25):7200-7213
The time-dependent inactivation of several serine proteases including human leukocyte elastase, cathepsin G, rat mast cell proteases I and II, and human skin chymase by a number of 3-alkoxy-4-chloroisocoumarins, 3-alkoxy-4-chloro-7-nitroisocoumarins, and 3-alkoxy-7-amino-4-chloroisocoumarins at pH 7.5 and the inactivation of several trypsin-like enzymes including human thrombin and factor XIIa by 7-amino-4-chloro-3-ethoxyisocoumarin and 4-chloro-3-ethoxyisocoumarin are reported. The 3-alkoxy substituent of the isocoumarin is likely interacting with the S1 subsite of the enzyme since the most reactive inhibitor for a particular enzyme had a 3-substituent complementary to the enzyme's primary substrate specificity site (S1). Inactivation of several enzymes including human leukocyte elastase by the 3-alkoxy-7-amino-4-chlorisocoumarins is irreversible, and less than 3% activity is regained upon extensive dialysis of the inactivated enzyme. Addition of hydroxylamine to enzymes inactivated by the 3-alkoxy-7-amino-4-chloroisocoumarins results in a slow (t1/2 greater than 6.7 h) and incomplete (32-57%) regain in enzymatic activity at pH 7.5. Inactivation by the 3-alkoxy-4-chloroisocoumarins and 3-alkoxy-4-chloro-7-nitroisocoumarins on the other hand is transient, and full enzyme activity is regained rapidly either upon standing, after dialysis, or upon the addition of buffered hydroxylamine. The rate of inactivation by the substituted isocoumarins is decreased when substrates or reversible inhibitors are present in the incubation mixture, which indicates active site involvement. The inactivation rates are dependent upon the pH of the reaction mixture, the isocoumarin ring system is opened concurrently with inactivation, and the reaction of 3-alkoxy-7-amino-4-chloroisocoumarins with porcine pancreatic elastase is shown to be stoichiometric. The results are consistent with a scheme where 3-alkoxy-7-amino-4-chloroisocoumarins react with the active site serine of a serine protease to give an acyl enzyme in which a reactive quinone imine methide can be released. Irreversible inactivation could then occur upon alkylation of an active site nucleophile (probably histidine-57) by the acyl quinone imine methide. The finding that hydroxylamine slowly catalyzes partial reactivation indicates that several inactivated enzyme species may exist. The 3-alkoxy-substituted 4-chloroisocoumarins and 4-chloro-7-nitroisocoumarins are simple acylating agents and do not give stable inactivated enzyme structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号