首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined the average location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) attached to a C12 sn-2 chain of a phosphatidylserine (PS) analogue (C12-NBD-PS) in zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylserine (PS) host membranes. (1)H magic angle spinning nuclear Overhauser enhancement spectroscopy indicates a highly dynamic reorientation of the aromatic molecule in the membrane. The average location of NBD is characterized by a broad distribution function along the membrane director with a maximum indicating the location of the probe in the lipid/water interface of the lipid membrane. This behavior can be explained by a backfolding of the sn-2 chain towards the aqueous phase. Small differences in the distribution profiles of the NBD group along the membrane normal between PC and PS host membranes were found: in a PC host membrane, the NBD distribution has its maximum in the glycerol region; in a PS host membrane, NBD resides mostly in the upper chain region. These differences may be accounted for by packing differences in the PC versus PS host membranes. As seen by (2)H NMR order parameters, PS bilayers show a much higher packing density compared to PC membranes. Consequently, backfolding of the sn-2 chain with the NBD group attached causes a larger decrease of molecular order of the sn-1 chain in PS than in PC membranes. The broad distributions obtained for lipid chain attached NBD molecules reflect the motional freedom and molecular disorder in the liquid-crystalline lipid membrane.  相似文献   

2.
100-ns molecular dynamics simulations of fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, both pure and containing 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl-chain labeled fluorescent analogs (C6-NBD-PC and C12-NBD-PC), are described. These molecules are widely used as probes for lipid structure and dynamics. The results obtained here for pure DPPC agree with both experimental and theoretical published works. We verified that the NBD fluorophore of both derivatives loops to a transverse location closer to the interface than to the center of the bilayer. Whereas this was observed previously in experimental literature works, conflicting transverse locations were proposed for the NBD group. According to our results, the maximum of the transverse distribution of NBD is located around the glycerol backbone/carbonyl region, and the nitro group is the most external part of the fluorophore. Hydrogen bonds from the NH group of NBD (mostly to glycerol backbone lipid O atoms) and to the nitro O atoms of NBD (from water OH groups) are continuously observed. Rotation of NBD occurs with approximately 2.5-5 ns average correlation time for these probes, but very fast, unresolved reorientation motions occur in <20 ps, in agreement with time-resolved fluorescence anisotropy measurements. Finally, within the uncertainty of the analysis, both probes show lateral diffusion dynamics identical to DPPC.  相似文献   

3.
100-ns molecular dynamics simulations of fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, both pure and containing 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl-chain labeled fluorescent analogs (C6-NBD-PC and C12-NBD-PC), are described. These molecules are widely used as probes for lipid structure and dynamics. The results obtained here for pure DPPC agree with both experimental and theoretical published works. We verified that the NBD fluorophore of both derivatives loops to a transverse location closer to the interface than to the center of the bilayer. Whereas this was observed previously in experimental literature works, conflicting transverse locations were proposed for the NBD group. According to our results, the maximum of the transverse distribution of NBD is located around the glycerol backbone/carbonyl region, and the nitro group is the most external part of the fluorophore. Hydrogen bonds from the NH group of NBD (mostly to glycerol backbone lipid O atoms) and to the nitro O atoms of NBD (from water OH groups) are continuously observed. Rotation of NBD occurs with ∼ 2.5-5 ns average correlation time for these probes, but very fast, unresolved reorientation motions occur in < 20 ps, in agreement with time-resolved fluorescence anisotropy measurements. Finally, within the uncertainty of the analysis, both probes show lateral diffusion dynamics identical to DPPC.  相似文献   

4.
Steady-state and time-resolved fluorescence properties of the 7-nitrobenz-2-oxa-1, 3-diazole-4-yl (NBD) fluorophore attached either to the sn-2 acyl chain of various phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidic acid) or to the polar headgroup of phosphatidylethanolamine were studied after insertion of these NBD-labeled lipid probes into unilamellar vesicles of phosphatidylcholine, phosphatidylglycerol, phosphatidic acid, and phosphatidylserine. The fluorescence response of the NBD group was observed to strongly depend on the chemical structure and physical state of the host phospholipids and on the chemical structure of the lipid probe itself. Among the various fluorescence parameters studied, i.e., Stokes' shifts, lifetimes, and quantum yields, the quantum yields were by far the most affected by these structural and environmental factors, whereas the Stokes' shifts were practically unaffected. Thus, depending on the phospholipid probe and the host phospholipid, the fluorescence emission of the NBD group was found to vary by a factor of up to 5. Careful analysis of the data shows that for the various couples of probe and host lipid molecules studied, deexcitation of the fluorophore was dominated by nonradiative deactivation processes. This great sensitivity of the NBD group to environmental factors originates from its well-known solvatochromic properties, and comparison of these knr values with those obtained for n-propylamino-NBD in a set of organic solvents covering a large scale of polarity indicates that in phospholipids, the NBD fluorophore experiences a dielectric constant of around 27-41, corresponding to a medium of relatively high polarity. From these epsilon values and on the basis of models of the dielectric transition that characterizes any water-phospholipid interface, it can be inferred that for all of the phospholipid probes and host phospholipids tested, the NBD group is located in the region of the polar headgroups, near the phosphoglycerol moiety of the lipids.  相似文献   

5.
The spectroscopic and ionization properties of various lipids labeled with the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group have been studied in model membranes using fluorescence, absorbance and electrophoretic mobility measurements. Electrophoretic measurements show that the NBD group is uncharged at neutral pH. However, at high pH, hydroxyl addition or deprotonation occurs with a pKa, depending upon conditions, of 11.5-11.8 for the NBD group of headgroup-labeled phosphatidylethanolamine (NBD-PE) and 11.1-11.5 for NBD labels placed at the end of one fatty acyl chain of a phosphatidylcholine (6-NBD-PC and 12-NBD-PC). This type of behavior is not observed in the case of a methylated NBD label placed in the flexible 'tail' of cholesterol (NBD-cholesterol). The similarity in pKa for NBD-PE and NBD-PCs suggests that in these cases the NBD group is at a similar depth in the membrane. This was examined further by comparison of the fluorescence emission maximum of the NBD group in model membranes with that in solvents of varying polarity. The apparent polarity experienced by NBD groups in model membranes indicates that for NBD-PE and 12-NBD-PC they are located at the polar region whereas the NBD group of NBD-cholesterol is deeply buried in a nonpolar region of the membrane. This conclusion is supported further by fluorescence quenching experiments measuring NBD exposure to the aqueous quencher Co2+. The results of this study confirm the tentative conclusions of our previous fluorescence quenching studies on the location of NBD groups in model membranes.  相似文献   

6.
We present a combined theoretical (molecular dynamics, MD) and experimental (differential scanning calorimetry, DSC) study of the effect of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl chain-labeled fluorescent phospholipid analogs (C6-NBD-PC and C12-NBD-PC) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. DSC measurements reveal that < 1 mol% of NBD-PC causes elimination of the pre-transition and a large loss of cooperativity of the main transition of DPPC. Labeling with C6-NBD-PC or C12-NBD-PC shifts the main transition temperature to lower or higher values, respectively. Following our recent report on the location and dynamics of these probes (BBA 1768 (2007) 467-478) in fluid phase DPPC, we present a detailed analysis of 100-ns MD simulations of systems containing either C6-NBD-PC or C12-NBD-PC, focused on their influence on several properties of the host bilayer. Whereas most monitored parameters are not severely affected for 1.6 mol% of probe, for the higher concentration studied (6.2 mol%) important differences are evident. In agreement with published reports, we observed that the average area per phospholipid molecule increases, whereas DPPC acyl chain order parameters decrease. Moreover, we predict that incorporation of NBD-PC should increase the electrostatic potential across the bilayer and, especially for C12-NBD-PC, slow lateral diffusion of DPPC molecules and rotational mobility of DPPC acyl chains.  相似文献   

7.
Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me(4)-BODIPY-8) at the end of C(3)-, C(5)-, C(7)-, or C(9)-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me(4)-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me(4)-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me(4)-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and approximately 506-515 nm) but also showed the absence of the 620-630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me(4)-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.  相似文献   

8.
Nitro-2,1,3-benzoxadiazol-4-yl (NBD) group is a widely used, environment-sensitive fluorescent probe. The negatively charged dithionite rapidly reduces the accessible NBD-labeled lipids in liposomes to their corresponding nonfluorescent derivatives. In this study both the phospholipid headgroup and acyl chain NBD-labeled L-alpha-1,2-dipalmitoyl-sn-glycero-3-phospho-[N-(4-nitrobenz-2-oxa-1,3-diazole)-ethanolamine] (DPPN) and 1-acyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC), respectively, were employed. The correlation of both the rate coefficient k(1) of the redox reaction and the fluorescence properties of the two probes with the membrane dipole potential Psi in fluid dipalmitoylglycerophosphocholine (DPPC) liposomes is demonstrated. When Psi of the bilayer was varied (decreased by phloretin or increased by 6-ketocholestanol), the value for k1 decreased for both DPPN and NBD-PC with increasing Psi. For both fluorophores a positive correlation to Psi was evident for the relative fluorescence emission intensity (RFI, normalized to the emission of the fluorophore in a DPPC matrix). The relative changes in emission intensity as a function of Psi were approximately equal for both NBD derivatives. Changes similar to those caused by phloretin were seen when dihexadecylglycerophosphocholine (DHPC) was added to DPPC liposomes, in keeping with the lower dipole potential for the former lipid compound compared with DPPC. These effects of Psi on NBD fluorescence should be taken into account when interpreting data acquired using NBD-labeled lipids as fluorescent probes.  相似文献   

9.
Two dimensional phase separation in lipid membranes and cell membranes is of interest to biology because of the idea of membrane rafts — compositionally heterogeneous liquid crystal domains with cellular functions. Few quantitative tools exist for characterizing and differentiating coexisting phases on a molecular scale. Lipid acyl chain order can be measured directly using deuterium nuclear magnetic resonance spectroscopy (2H NMR), or inferred using fluorescence microscopy along with the environment-sensitive probe Laurdan. We found a linear relationship between the 2H NMR order parameter and Laurdan generalized polarization. This observed correlation supports the idea that lipid chain order is tightly associated with the amount and dynamics of water molecules at the glycerol backbone level of the membrane.  相似文献   

10.
Powl AM  Wright JN  East JM  Lee AG 《Biochemistry》2005,44(15):5713-5721
The hydrophobic thickness of a membrane protein is an important parameter, defining how the protein sits within the hydrocarbon core of the lipid bilayer that surrounds it in a membrane. Here we show that Trp scanning mutagenesis combined with fluorescence spectroscopy can be used to define the hydrophobic thickness of a membrane protein. The mechanosensitive channel of large conductance (MscL) contains two transmembrane alpha-helices, of which the second (TM2) is lipid-exposed. The region of TM2 that spans the hydrocarbon core of the bilayer when MscL is reconstituted into bilayers of dioleoylphosphatidylcholine runs from Leu-69 to Leu-92, giving a hydrophobic thickness of ca. 25 A. The results obtained using Trp scanning mutagenesis were confirmed using Cys residues labeled with the N-methyl-amino-7-nitroben-2-oxa-1,3-diazole [NBD] group; both fluorescence emission maxima and fluorescence lifetimes for the NBD group are sensitive to solvent dielectric constant over the range (2-40) thought to span the lipid headgroup region of a lipid bilayer. Changing phospholipid fatty acyl chain lengths from C14 and C24 results in no significant change for the fluorescence of the interfacial residues, suggesting very efficient hydrophobic matching between the protein and the surrounding lipid bilayer.  相似文献   

11.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. The NBD group of acyl chain labeled NBD lipids is known to loop up to the membrane interface in fluid phase membranes. However, the organization of these lipids in gel phase membranes is not resolved. In this paper, we monitored the influence of the membrane phase state on the looping up behavior of acyl chain labeled NBD lipids utilizing red edge excitation shift (REES) and other sensitive fluorescence approaches. Interestingly, our REES results indicate that NBD group of lipids, which are labeled at the fatty acyl region, resides in the more hydrophobic region in gel phase membranes, and complete looping of the NBD group occurs only in the fluid phase. This is supported by other fluorescence parameters such as polarization and lifetime. Taken together, our results demonstrate that membrane packing, which depends on temperature and the phase state of the membrane, significantly affects the localization of acyl chain labeled NBD lipids. In view of the wide ranging use of NBD-labeled lipids in cell and membrane biology, these results could have potentially important implications in future studies involving these lipids as tracers.  相似文献   

12.
The interfacial activation of porcine pancreatic phospholipase A(2) (PLA(2)) during the hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposomes at different temperatures has been monitored by fluorescence changes of the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) lipid derivatives 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (C(12)-NBD-PC) and 12-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)]dodecanoic acid (C(12)-NBD-FA) inserted in the substrate vesicles. These long-chain monitors, in contrast to the previously used C(6)-NBD-PC, detect latency times of PLA(2) action, similar to those measured by the classic titrimetric, pH-stat method. Interestingly, hydrolysis of the host vesicles results in a decrease in fluorescence not only of C(12)-NBD-PC, a substrate analog, but also of product derivative C(12)-NBD-FA. Ultrafiltration experiments show that C(12)-NBD-FA does not migrate to the aqueous phase upon hydrolysis of the host liposomes. Besides, in a simulated hydrolysis experiment in which increasing proportions of palmitic acid and 1-palmitoyl-sn-glycero-3-phosphocholine were cosonicated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, C(12)-NBD-PC fluorescence was insensitive to products, whereas C(12)-NBD-FA did show a decreased emission intensity as in the actual hydrolysis experiments. The phenomenon is triggered above a critical concentration of products (10 mol%) suggesting that cosegregation of NBD-FA (either added as such or generated by hydrolysis of C(12)-NBD-PC) and products may be related to the decrease in fluorescence. Phase separation should create microdomains of increased C(12)-NBD-FA surface density and cause concentration quenching. In addition, and taking into account that the NBD group may be located near the interfacial region, it is possible that in segregating with products, the fluorescent moiety of C(12)-NBD-FA becomes exposed to microenvironments of higher surface polarity, which further decreases its quantum yield.  相似文献   

13.
In this report, parallax analysis of fluorescence quenching (see the preceding paper in this issue) was used to determine the location (depth) of anthroyloxy and carbazole probes attached to model membrane inserted fatty acids. A monotonic increase in depth was found as the number of carbon atoms between the attachment site of the probe and the fatty acyl carboxyl group is increased. It was also found that depth is sensitive to pH, with an increase in probe depth upon protonation of the fatty acid carboxyl group of around 0.5-2.5 A, depending on probe location and identity. This result shows that carboxyl protonation causes an increase in depth all along a fatty acid chain. In addition, it indicates that parallax analysis is very sensitive to small changes in depth. At a given pH, no significant change in probe depth was observed in vesicles containing anionic phospholipid or at various ionic strengths, suggesting these parameters do not strongly regulate fatty acyl chain location. It was also found that there is a decrease of the apparent depth of each of the fatty acyl attached probes both at longer excitation wavelengths and at longer emission wavelengths. This is consistent with there being a distribution of depth for each fluorophore, with shallower fluorophore dominating the fluorescence at red-shifted wavelengths. Solvent relaxation effects also appear to contribute to this wavelength dependence.  相似文献   

14.
The transbilayer movement (flip-flop) of 7-nitrobenz-2-oxa-1,3-diazol-4-yl phosphatidylethanolamine (NBD-PE) in phosphatidylcholine (PC) membranes containing various acyl chains was measured by dithionite quenching of NBD fluorescence. Of specific interest was docosahexaenoic acid (DHA), the longest and most unsaturated acyl chain commonly found in membranes. This molecule represents the extreme example of a family of important fatty acids known as omega-3s and has been clearly demonstrated to alter membrane structure and function. One important property that has yet to be reported is the effect of DHA on membrane phospholipid flip-flop. This study demonstrates that as the number of double bonds in the fatty acyl chains comprising the membrane increases, so does the rate of flip-flop of the NBD-PE probe. The increase is particularly marked in the presence of DHA. Half-lives t(1/2) of 0.29 and 0.086 h describe the process in 1-stearoyl-2-docosahexaenoylphosphatidylcholine and 1,2-didocosahexaenoylphosphatidylcholine, respectively, whereas in 1-stearoyl-2-oleoylphosphatidylcholine t(1/2)=11.5h. Enhanced permeability to dithionite with increasing unsaturation was also indicated by our results. We conclude that PC membranes containing DHA support faster flip-flop and permeability rates than those measured for other less-unsaturated PCs.  相似文献   

15.
Two key commonly used cannabinergic agonists, CP55940 and WIN55212-2, are investigated for their effects on the lipid membrane bilayer using (2)H solid state NMR, and the results are compared with our earlier work with delta-9-tetrahydrocannabinol (Δ(9)-THC). To study the effects of these ligands we used hydrated bilayers of dipalmitoylphosphatidylcholine (DPPC) deuterated at the 2' and 16' positions of both acyl chains with deuterium atoms serving as probes for the dynamic and phase changes at the membrane interface and at the bilayer center respectively. All three cannabinergic ligands lower the phospholipid membrane phase transition temperature, increase the lipid sn-2 chain order parameter at the membrane interface and decrease the order at the center of the bilayer. Our studies show that the cannabinoid ligands induce lateral phase separation in the lipid membrane at physiological temperatures. During the lipid membrane phase transition, the cooperative dynamic process whereby the C-(2)H segments at the interface and center of the bilayer spontaneously reach the fast exchange regime ((2)H NMR timescale) is distinctively modulated by the two cannabinoids. Specifically, CP55940 is slightly more efficient at inducing liquid crystalline-type (2)H NMR spectral features at the membrane interface compared to WIN55212-2. In contrast, WIN55212-2 has a far superior ability to induce liquid crystalline-type spectral features at the center of the bilayer, and it increases the order parameter of the sn-1 chain in addition to the sn-2 chain of the lipids. These observations suggest the cannabinoid ligands may influence lipid membrane domain formations and there may be contributions to their cannabinergic activities through lipid membrane microdomain related mechanisms. Our work demonstrates that experimental design strategies utilizing specifically deuterium labeled lipids yield more detailed insights concerning the properties of lipid bilayers.  相似文献   

16.
The interaction of a peptide derived from the sequence of apolipoprotein C-II (apoC-II) with a model lipid surface has been investigated by fluorescence spectroscopy. ApoC-II19-39, labeled at the N-terminus with 7-nitrobenz-2-oxa-1,3-diazole (NBD), bound to small unilamellar vesicles of phosphatidylcholine with a dissociation constant of 6 microM. The lipid-bound NBD-labeled peptide exhibited a red-edge excitation shift in its emission maximum and anisotropy, consistent with insertion of the probe into the motionally restricted, polar environment provided by the bilayer interface. The small Stokes shift of the NBD fluorophore permits electronic energy homotransfer between peptides on the lipid surface and results in depolarization of the NBD emission. At high surface densities of lipid-bound peptide, the anisotropy of the NBD probe was 33% lower than in corresponding samples in which electronic energy homotransfer was prevented by the addition of an unlabeled peptide. The efficiency of energy transfer between probes was not consistent with a random distribution of peptides on the lipid surface, indicating instead the self-association of lipid-bound apoC-II19-39. We propose that the role of this sequence in apoC-II is not only to mediate binding of protein to a lipid surface, but also to stabilize the lipoprotein complexes by associating with other amphipathic helices within apoC-II and with other apolipoproteins.  相似文献   

17.
The fluorophore 4-heptadecyl-7-hydroxycoumarin was used as a probe to study the properties of phospholipid bilayers at the lipid-water interface. To this end, the steady-state fluorescence anisotropy, the differential polarized phase fluorometry, and the emission lifetime of the fluorophore were measured in isotropic viscous medium, in lipid vesicles, and in the membrane of vesicular stomatitis virus. In the isotropic medium (glycerol), the probe showed an increase in the steady-state fluorescence anisotropy with a decrease in temperature, but the emission lifetime was unaffected by the change in temperature. In glycerol, the observed and predicted values for maximum differential tangents of the probe were identical, indicating that in isotropic medium 4-heptadecyl-7-hydroxycoumarin is a free rotator. Nuclear magnetic resonance and differential scanning calorimetric studies with lipid vesicles containing 1-2 mol % of the fluorophore indicated that the packaging density of the choline head groups was affected in the presence of the probe with almost no effect on the fatty acyl chains. The fluorophore partitioned equally well in the gel and liquid-crystalline phase of the lipids in the membrane, and the phase transition of the bilayer lipids was reflected in the steady-state fluorescence anisotropy of the probe. The presence of cholesterol in the lipid vesicles had a relatively small effect on the dynamics of lipids in the liquid-crystalline state, but a significant disordering effect was noted in the gel state. One of the most favorable properties of the probe is that its emission lifetime was unaffected by the physical state of the lipids or by the temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Lipid bilayer perturbations induced by simple hydrophobic peptides   总被引:1,自引:0,他引:1  
R E Jacobs  S H White 《Biochemistry》1987,26(19):6127-6134
Mixtures of tripeptides of the form Ala-X-Ala-O-tert-butyl with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers have been used as a model system for studying the influence of hydrophobic peptides on membrane order and dynamic properties by means of deuterium NMR spectroscopy. Tripeptides with X = Ala, Leu, Phe, and Trp have been examined. Lipid 2H NMR spectra of acyl chain perdeuteriated DMPC ([2H54]DMPC) show that the addition of peptide disorders the bilayer lipid acyl chains and that the extent of the perturbation increases as the size of the central residue increases. Moment analyses of the spectra indicate that, while the average acyl chain order parameter decreases with increasing central residue size, the order parameter spread across the bilayer (the mean-squared width of the distribution) increases. Lipid segmental 2H longitudinal relaxation rates, 1/T1(i), exhibit a square-law functional dependence on SCD(i) both with and without the addition of peptide. The addition of peptide causes an increase in the slope of plots of 1/T1(i) vs. (SCD(i))2 with little change in the 1/T1(i) intercept, indicating a complex modulation of the acyl chain motions. 2H NMR spectra of Ala-[2H4]Ala-Ala-O-tert-butyl in DMPC bilayers have both isotropic and powder pattern components that vary as a function of temperature. At 30 degrees C the 2H spin-lattice relaxation times for the labeled Ala residue increase in going from bilayer-incorporated peptide to polycrystalline peptide to polycrystalline Ala.HCl. These experiments provide no information on the location of these peptides in the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have examined the internalization and degradation of a fluorescent analog of phosphatidylcholine after its insertion into the plasma membrane of cultured Chinese hamster fibroblasts. 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidylcholine (C6-NBD- PC) was incorporated into the cell surface by liposome-cell lipid transfer at 2 degrees C. The fluorescent lipid remained localized at the plasma membrane as long as the cells were kept at 2 degrees C; however, when the cells were warmed to 37 degrees C, internalization of some of the fluorescent lipid occurred. Most of the internalized C6-NBD- PC accumulated in the Golgi apparatus although a small amount was found randomly distributed throughout the cytoplasm in punctate fluorescent structures. Internalization of the fluorescent lipid at 37 degrees C was blocked by the presence of inhibitors of endocytosis. Incubation of cells containing C6-NBD-PC at 37 degrees C resulted in a rapid degradation of the fluorescent lipid. This degradation occurred predominantly at the plasma membrane. The degradation of C6-NBD-PC resulted in the release of NBD-fatty acid into the medium. We have compared the internalization of the fluorescent lipid with that of a fluorescent protein bound to the cell surface. Both fluorescent lipid and protein remained at the plasma membrane at 2 degrees C and neither were internalized at 37 degrees C in the presence of inhibitors of endocytosis. However, when incubated at 37 degrees C under conditions that permit endocytosis, the two fluorescent species appeared at different intracellular sites. Our data suggest that there is no transmembrane movement of C6-NBD-PC and that the fluorescent probe reflects the internalization of the outer leaflet of the plasma membrane lipid bilayer. The results are consistent with the Golgi apparatus as being the primary delivery site of phospholipid by bulk membrane movement from the plasma membrane.  相似文献   

20.
Influence of the transmembrane protein bacterioopsin (the retinal-free form of bacteriorhodopsin) on the polarity of egg-phosphatidylcholine bilayers was studied by means of a steady-state and time-resolved fluorescence approach exploiting the solvatochromic properties of the 2-anthroyl fluorophore. Introduced in phosphatidylcholine molecules in the form of 8-(2-anthroyl)octanoic acid, this fluorophore probed the hydrocarbon core of the lipid bilayer. As previously shown (E. Pérochon et al., Biochemistry 31 (1992) 7672-7682), water molecules were detected in this region of the terminal part of the lipid acyl chains. Their number was considerably reduced upon addition of bacterioopsin to the lipids. This was assessed by a blue shift in the fluorescence emission spectra of the probe and a marked decrease in the fractional population of fluorophores interacting with water, to the benefit of those experiencing a hydrophobic environment. In agreement with current theories, this decrease in the hydration of the bilayer may be linked to an increase in the acyl chain order and a decrease in the lateral diffusion coefficient of lipids near the protein. The data obtained at high protein concentration accounts for a protein/lipid interface which is much less hydrated than the hydrophobic core of a protein-free lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号