首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscular dystrophies are characterized by continuous cycles of degeneration and regeneration that result in extensive fibrosis and a progressive diminution of muscle mass. Cell surface heparan sulfate proteoglycans are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with a great variety of ligands, including ECM constituents, adhesion molecules, and growth factors. In this study, we evaluated the expression and localization of three heparan sulfate proteoglycans in the biopsies of Duchenne muscular dystrophy (DMD) patients. Through SDS-PAGE analyses followed by specific identification of heparitinase-digested proteins with an anti-Delta-heparan sulfate specific monoclonal antibodies, we observed an increase of three forms of heparan sulfate proteoglycans, corresponding to perlecan, syndecan-3, and glypican-1. Immunohistochemistry analyses indicated a differential localization for these proteoglycans: glypican-1 and perlecan were found mainly associated to ECM structures, while syndecan-3 was associated to muscle fibers. These results suggest that the amount of specific heparan sulfate proteoglycans is augmented in skeletal muscle in DMD patients presenting a differential localization.  相似文献   

2.
硫酸肝素蛋白多糖广泛分布于动物组织的细胞膜和细胞外基质,对于机体发育和维持生理平衡至关重要.聚糖链硫酸肝素特有的分子结构使得这类大分子复合物具有多种生物功能,这些功能主要通过与蛋白质配体的结合实现.细胞表面的硫酸肝素蛋白多糖介导多种细胞活性因子与其受体的结合,参与信号转导的过程.硫酸肝素蛋白多糖也是细胞间质的重要组成部分,与胶原蛋白一起维持间质结构的稳定.肝素酶通过降解硫酸肝素从而调节细胞因子的活性和细胞间质的微环境.因此,揭示硫酸肝素的分子结构及其功能是生物学的一个重要研究方向.然而,由于硫酸肝素结构复杂,且不均一,使得这个领域的研究发展相对缓慢.不过,随着分析手段的提高和完善,国际上对于硫酸肝素结构与功能的报道迅速增加,同时国内对于硫酸肝素的研究也逐步受到重视.关于硫酸肝素的生理功能最近已有几篇比较全面的综述.此综述主要介绍硫酸肝素在病变中的作用,旨在探讨利用硫酸肝素和肝素酶作为靶标,研发预防和治疗这些疾病药物的可能性.  相似文献   

3.
Proteoglycans (PGs) are important components of the skeletal muscle extracellular matrix (ECM). Skeletal muscles are composed of muscle fibers and mononucleated cells. The latter are known to synthesize and secrete several PGs. Rat skeletal muscle ECM contains a chondrotin/dermatan sulfate PG which was immunoprecipitated by antibodies against rat decorin. The synthesis and secretion of PGs by a mouse cell line was analyzed during in vitro differentiation. PGs were characterized by biochemical and immunological techniques including immunocytolocalization experiments. At least three different PGs are synthesized and secreted by differentiated myotubes: a 220 to 460 kDa heparan sulfate, a 250 to 310 kDa chondroitin/dermatan sulfate, and a 75 to 130 kDa chondroitin/dermatan sulfate. This latter PG was specifically immunoprecipitated with antibodies against rat fibroblast decorin. Indirect immunocytolocalization analysis revealed that decorin was localized inside the cells, with a strong reaction around the nuclei. During differentiation the relative proportions of some PGs changed. Thus, a decrease in the relative proportion of the heparan sulfate PG was observed, whereas a significant increase in the relative proportion of decorin was detected. No change in the large chondroitin/dermatan PG was seen during the differentiation process. The possible cell sources of decorin found in rat skeletal muscle ECM are discussed.  相似文献   

4.
We have previously shown that asymmetric collagen-tailed acetylcholinesterase (AChE) is anchored to the extracellular matrix (ECM) by heparan sulfate proteoglycans (HSPGs). Here we present our studies on the characterization of such PGs from the ECM of rat skeletal muscles. After radiolabeling with 35SO4 for 24h, PGs were extracted from the muscle ECM with 4.0 M guanidine-HCl containing protease inhibitors. PGs were subsequently isolated using sequential DEAE-Sephacel chromatography, digestion with chondroitinase ABC, and Sepharose CL-4B. Two different hydrodynamic size species of HSPGs were found. One type had a Mr of 4-6 X 10(5) (Kav = 0.25) as estimated by gel chromatography in the presence of 1% SDS and accounted for 75% of the total HSPGs. The other HSPG had a Mr 1.5-2.5 X 10(5) (Kav = 0.41). The glycosaminoglycan (GAG) side chains (Mr 20,000 and 12,000) were found composed only of heparan sulfate as determined by nitrous acid oxidation and heparitinase treatment. The large-sized HSPG, which is concentrated in synaptic regions, contains only GAG chains of Mr 20,000, suggesting that each HSPG contains only one kind of heparan sulfate chain in its structure. Our results definitively establish by biochemical criteria that the basement membrane of mammalian skeletal muscle contains HSPGs, the likely matrix receptor for the immobilization of the asymmetric collagen-tailed AChE at the neuromuscular junction.  相似文献   

5.
Anchorage of cells to "heparin" – binding domains that are prevalent in extracellular matrix (ECM) components is thought to occur primarily through the syndecans, a four-member family of transmembrane heparan sulfate proteoglycans that communicate environmental cues from the ECM to the cytoskeleton and the signaling apparatus of the cell. Known activities of the syndecans trace to their highly conserved cytoplasmic domains and to their heparan sulfate chains, which can serve to regulate the signaling of growth factors and morphogens. However, several emerging studies point to critical roles for the syndecans' extracellular protein domains in tumor cell behavior to include cell adhesion and invasion. Although the mechanisms of these activities remain largely unknown, one possibility involves "co-receptor" interactions with integrins that may regulate integrin function and the cell adhesion-signaling phenotype. Thus, alterations in syndecan expression, leading to either overexpression or loss of expression, both of which take place in tumor cells, may have dramatic effects on tumor cell invasion.  相似文献   

6.
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell–ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell–ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell–ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this “extracellular matrix dimension” should be added to our conceptual network of factors contributing to skeletal myogenesis.  相似文献   

7.
Myogenesis in the embryo and the adult mammal consists of a highly organized and regulated sequence of cellular processes to form or repair muscle tissue that include cell proliferation, migration, and differentiation. Data from cell culture and in vivo experiments implicate both FGFs and HGF as critical regulators of these processes. Both factors require heparan sulfate glycosaminoglycans for signaling from their respective receptors. Since syndecans, a family of cell-surface transmembrane heparan sulfate proteoglycans (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the expression of syndecans 1-4 in embryonic, fetal, postnatal, and adult muscle tissue, as well as on primary adult muscle fiber cultures. We show that syndecan-1, -3, and -4 are expressed in developing skeletal muscle tissue and that syndecan-3 and -4 expression is highly restricted in adult skeletal muscle to cells retaining myogenic capacity. These two HSPGs appear to be expressed exclusively and universally on quiescent adult satellite cells in adult skeletal muscle tissue, suggesting a role for HSPGs in satellite cell maintenance or activation. Once activated, all satellite cells maintain expression of syndecan-3 and syndecan-4 for at least 96 h, also implicating these HSPGs in muscle regeneration. Inhibition of HSPG sulfation by treatment of intact myofibers with chlorate results in delayed proliferation and altered MyoD expression, demonstrating that heparan sulfate is required for proper progression of the early satellite cell myogenic program. These data suggest that, in addition to providing potentially useful new markers for satellite cells, syndecan-3 and syndecan-4 may play important regulatory roles in satellite cell maintenance, activation, proliferation, and differentiation during skeletal muscle regeneration.  相似文献   

8.
We have proposed a model in which fibroblast growth factor (FGF) signalling requires the interaction of FGF with at least two FGF receptors, a heparan sulfate proteoglycan (HSPG) and a tyrosine kinase. Since FGF may be a key mediator of skeletal muscle differentiation, we examined the synthesis of glycosaminoglycans in MM14 skeletal muscle myoblasts and their participation in FGF signalling. Proliferating and differentiated MM14 cells exhibit similar levels of HSPG, while differentiated cells exhibit reduced levels of chondroitin sulfate proteoglycans and heparan sulfate chains. HSPGs, including syndecan, present in proliferating cells bind bFGF, while the majority of chondroitin sulfate and heparan sulfate chains do not. Treatment of skeletal muscle cells with chlorate, a reversible inhibitor of glycosaminoglycan sulfation, was used to examine the requirement of sulfated proteoglycans for FGF signalling. Chlorate treatment reduced glycosaminoglycan sulfation by 90% and binding of FGF to high affinity sites by 80%. Chlorate treatment of MM14 myoblasts abrogated the biological activity of acidic, basic, and Kaposi's sarcoma FGFs resulting in terminal differentiation. Chlorate inhibition of FGF signalling was reversed by the simultaneous addition of sodium sulfate or heparin. Further support for a direct role of heparan sulfate proteoglycans in fibroblast growth factor signal transduction was demonstrated by the ability of heparitinase to inhibit basic FGF binding and biological activity. These results suggest that activation of FGF receptors by acidic, basic or Kaposi's sarcoma FGF requires simultaneous binding to a HSPG and the tyrosine kinase receptor. Skeletal muscle differentiation in vivo may be dependent on FGFs, FGF tyrosine kinase receptors, and HSPGs. The regulation of these molecules may then be expected to have important implications for skeletal muscle development and regeneration.  相似文献   

9.
Bacterial chondroitinases (both ABC and AC types) release asymmetric and globular forms of AChE from chick skeletal muscle samples. Heparinases, however, including heparitinase I, fail to do so under different incubation conditions. These results do not support the direct implication of the heparin/heparan sulfate family of GAGs in the interaction of the different AChE molecular forms with the muscle ECM. GAGs of the chondroitin/dermatan sulfate group could however be involved, either directly or indirectly, in the attachment of the AChE collagen-like tail to the muscle basal lamina.  相似文献   

10.
Previous studies have reported an increase in heparan sulfate glycosaminoglycan (HSGAG) during skeletal muscle differentiation in culture. We have investigated this phenomenon further in relation to the heparan sulfate proteoglycans (HSPG) produced by myogenic cultures. Pulse-chase analysis indicated an approx. 3-fold increase in heparan sulfate synthesis in myotube cultures over that in proliferating or aligning myoblast cultures. Muscle fibroblast culture heparan sulfate synthesis was higher than that of myoblasts but was lower than myotubes. The turnover rates appeared to be the same for all stages of development, with a t1/2 of approx. 5 h. Enrichment for heparan sulfate by Sepharose CL-4B and DEAE-Sephacel chromatography indicated an increase in the hydrodynamic size of the proteoglycan produced by myotubes over that from myoblasts, with a shift in Kav from 0.14-0.19 to 0.07. Fibroblasts synthesized the smallest proteoglycan, with a Kav of 0.22. All of the proteoglycans contained similar sized glycosaminoglycan chains with an estimated molecular weight of 30,000-40,000. Localization of the heparan sulfate proteoglycan in myotube cultures by trypsin sensitivity indicated much of the intact proteoglycan to be closely associated with the cell surface, while internalized material appeared in a degraded form.  相似文献   

11.
The effect of p-nitrophenyl-beta-D-xyloside on proteoglycan synthesis and extracellular matrix (ECM) formation by cultured bovine corneal endothelial (BCE) cells was investigated. BCE cells actively proliferating on plastic dishes produced in the absence of xyloside an ECM containing various proteoglycans. Heparan sulfate was the main 35S-labeled glycosaminoglycan component (83%). Dermatan sulfate (14%) and chondroitin sulfate (3%) were also present. Exposure of actively proliferating BCE cells to xyloside totally inhibited synthesis of proteoglycans containing dermatan sulfate or chondroitin sulfate and caused an 86% inhibition of heparan sulfate proteoglycan synthesis. The heparan sulfate proteoglycans that were extracted from the ECM produced by BCE cells exposed to xyloside had a smaller size and a reduced charge density compared to their counterparts extracted from the ECM of cultures not exposed to xyloside. In contrast to the inhibitory effect of the xyloside on proteoglycan synthesis, exposure of actively proliferating BCE cells to xyloside stimulated synthesis of free chondroitin sulfate and heparan sulfate chains. All of the xyloside-initiated glycosaminoglycan chains were secreted into the culture medium. The proteoglycan-depleted matrices produced by BCE cells exposed to xyloside were used to study the effect of these matrices on proteoglycan synthesis by BCE cells. BCE cells growing on proteoglycan-depleted ECM showed a considerable increase in the rate of proteoglycan synthesis compared to BCE cells growing on normal ECM. Moreover, the pattern of glycosaminoglycan synthesis by BCE cells growing on proteoglycan-depleted ECM was changed to one which resembled that of BCE cells actively proliferating on plastic dishes. It is postulated that BCE cells are able to recognize when an ECM is depleted of proteoglycan and to respond to it by increasing their rate of proteoglycan synthesis and incorporation into the ECM.  相似文献   

12.
After Ag capture and exposure to danger stimuli, maturing dendritic cells (DCs) migrate to regional lymph nodes, where antigenic peptides are presented to T lymphocytes. To migrate from peripheral tissue such as the epidermis to regional lymph nodes, Ag-bearing epidermal Langerhans cells must move through an extracellular matrix (ECM) of various compositions. The nature of their capacity to transmigrate via ECM is not well understood, although MIP-3beta and CCR7 play critical roles. We were interested in verifying whether heparanase, a heparan sulfate-degrading endo-beta-d-glucuronidase that participates in ECM degradation and remodeling, is expressed and functional in monocyte-derived DCs. Using immunohistochemistry, confocal microscopy, RT-PCR, Western blot analysis, assays for heparanase activity, and Matrigel transmigration, we show that heparanase is expressed in both nuclei and cytoplasm of immature DCs, and that gene expression and synthesis take place mainly in monocytes and early immature DCs. We also found that both nuclear and cytoplasm fractions show heparanase activity, and upon LPS-induced maturation, heparanase translocates to the cell surface and degrades ECM heparan sulfate. Matrigel transmigration assays showed a MIP-3beta-comparable role for heparanase. Because heparan sulfate glycosaminoglycans play a key role in the self-assembly, insolubility, and barrier properties of the ECM, the results of this study suggest that heparanase is a key enzyme in DC transmigration through the ECM.  相似文献   

13.
14.
Numerous extracellular proteins, growth factors, chemokines, cytokines, enzymes, lipoproteins, involved in a variety of biological processes, interact with heparin and/or heparan sulfate at the cell surface and in the extracellular matrix (ECM). The goal of this study is to investigate the relationship(s) between affinity and kinetics of heparin–protein interactions and the localization of the proteins, their intrinsic disorder and their biological roles. Most proteins bind to heparin with a higher affinity than their fragments and form more stable complexes with heparin than with heparan sulfate. Lipoproteins and matrisome-associated proteins (e.g. growth factors and cytokines) bind to heparin with very high affinity. Matrisome-associated proteins form transient complexes with heparin. However they bind to this glycosaminoglycan with a higher affinity than the proteins of the core matrisome, which contribute to ECM assembly and organization, and than the secreted proteins which are not associated with the ECM. The association rate of proteins with heparin is related to the intrinsic disorder of heparin-binding sites. Enzyme inhibitor activity, protein dimerization, skeletal system development and pathways in cancer are functionally associated with proteins displaying a high or very high affinity for heparin (KD < 100 nM). Besides their use in investigating molecular recognition and functions, kinetics and affinity are essential to prioritize interactions in networks and to build network models as discussed for the interaction network established at the surface of endothelial cells by endostatin, a heparin-binding protein regulating angiogenesis.  相似文献   

15.
Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.  相似文献   

16.
Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.  相似文献   

17.
During organ differentiation, cell-extracellular matrix (ECM) interactions are required. The components of the ECM, such as glycosaminoglycans, fibronectin, laminin, and collagens, change in relation to cytokine and enzyme activity. Moreover, glycosaminoglycans (GAGs) are components of the ECM that play an important role in both cytokine regulation and cell activities. In this work we studied the accumulation of hyaluronic acid and chondroitin sulfate and heparan sulfate proteoglycans (PGs), beta-N-acetyl-D-glucosaminidase activity, the presence of transforming growth factor beta(2) (TGF beta(2)), and interleukin-1 (IL-1), and the localization of fibronectin, laminin, and collagen I and IV during the early stages of chick embryo lung development. We also determined the levels of hyaluronic acid, chondroitin sulfate, dermatan sulfate, and heparan sulfate GAGs and the activity of beta-N-acetyl-D-glucosaminidase with biochemical methods. Our data show that beta-N-acetyl-D-glucosaminidase activity increases in each cell, especially in the epithelial growth front at the emergence of each bronchial bud, where hyaluronic acid and IL-1 are located in the surrounding mesenchymal areas. Chondroitin sulfate and heparan sulfate PGs, fibronectin, laminin, and collagen I and IV are evident in the area near the basal membrane along the sides where the forming structures are stabilized. Biochemical data show that beta-N-acetyl-D-glucosaminidase activity increases in cells during lung development and is related to GAG decrease and to modifications of the nonsulfated/sulfated GAG ratio. These modifications could change cytokine activity and play an important role in bronchial branching development.  相似文献   

18.
Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells   总被引:5,自引:0,他引:5  
Bovine corneal endothelial (BCE) cells seeded and grown on plastic dishes were labeled with 35S-sulfate or 3H-glucosamine for 48 h at various phases of growth of the cultures. Newly synthesized proteoglycans were isolated from the culture medium and from the extracellular matrix (ECM) produced by the BCE cells, and the glycosaminoglycan (GAG) component of the proteoglycans was analyzed. Cells actively proliferating on plastic surfaces secreted an ECM that contained heparan sulfate as the major 35S-labeled GAG (86%) and dermatan sulfate as a minor component (13%). Upon reaching confluence, the BCE cells incorporated 35S-labeled chondroitin sulfate (20%), as well as heparan sulfate (66%) and dermatan sulfate (14%), into the EC. Seven-day postconfluent cells incorporated newly synthesized heparan sulfate and dermatan sulfate into the matrix in approximately equal proportions. Dermatan sulfate was the main 35S-labeled GAG (60-65%) in the medium of both confluent and postconfluent cultures. 35S-Labeled chondroitin sulfate (20-25%) and heparan sulfate (15%) were also secreted into the culture medium. The type of GAG incorporated into newly synthesized ECM was affected when BCE cells were seeded onto ECM-coated dishes instead of plastic. BCE cells actively proliferating on ECM-coated dishes incorporated newly synthesized heparan sulfate and dermatan sulfate into the ECM in a ratio that was very similar to the ratio of these GAGs in the underlying ECM. Addition of mitogens such as fibroblast growth factor (FGF) to the culture medium altered the type of GAG synthesized and incorporated into the ECM by BCE cells seeded onto ECM-coated dishes if the cells were actively growing, but had no effect on postconfluent cultures.  相似文献   

19.
During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.  相似文献   

20.
Heparan sulfate and heparin, two sulfated glycosaminoglycans (GAGs), extracted collagen-tailed acetylcholinesterase (AChE) from the extracellular matrix (ECM) of the electric organ of Discopyge tschudii. The effect of heparan sulfate and heparin was abolished by protamine; other GAGs could not extract the esterase. The solubilization of the asymmetric AChE apparently occurs through the formation of a soluble AChE-GAG complex of 30S. Heparitinase treatment but not chondroitinase ABC treatment of the ECM released asymmetric AChE forms. This provides direct evidence for the vivo interaction between asymmetric AChE and heparan sulfate residues of the ECM. Biochemical analysis of the electric organ ECM showed that sulfated GAGs bound to proteoglycans account for 5% of the total basal lamina. Approximately 20% of the total GAGs were susceptible to heparitinase or nitrous acid oxidation which degrades specifically heparan sulfates, and approximately 80% were susceptible to digestion with chondroitinase ABC, which degrades chondroitin-4 and -6 sulfates and dermatan sulfate. Our experiments provide evidence that asymmetric AChE and carbohydrate components of proteoglycans are associated in the ECM; they also indicate that a heparan sulfate proteoglycan is involved in the anchorage of the collagen-tailed AChE to the synaptic basal lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号