首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inconsistent role of nitric oxide on lipolysis in isolated rat adipocytes   总被引:2,自引:0,他引:2  
Though two isoforms of nitric oxide synthase, iNOS and eNOS, were reported in adipocytes, the role of NO in adipose tissue is still ambiguous. The aims of the present study were 1) to follow the effect of bacterial lipopolysaccharide (LPS), on 24 h-lipolysis in rat epididymal adipocyte culture in relation to iNOS stimulation; 2) to compare LPS-induced NO effects with exogenously NO, delivered as S-nitroso-N-acetylpenicillamine (SNAP), and 3) to examine the possible role of NO signaling agonist in lipolysis mediated by the beta(3)-adrenoreceptor agonist. Lipolysis was measured by glycerol and free fatty acid (FFA) production. The medium nitrite levels were used for the indirect estimation of NOS expression. Adipocyte mitochondrial function was assessed by the MTT test. LPS produced a concentration-dependent increase of NO with a decrease of viability at the highest dose. However, LPS did not affect lipolysis. SNAP did not exhibit significant changes in glycerol, FFA or MTT. BRL-37344 and db-cAMP significantly increased nitrite, glycerol and FFA levels. There was a positive correlation between glycerol release and nitrite production. Moreover, BRL-37344 significantly reduced mitochondrial functions. The pretreatment with bupranolol, beta(3)-antagonist, restored all parameters affected by BRL-37344. These results support a concept that NO fulfils multifaceted role of stimulating lipolysis under physiological conditions (beta-agonistic effect) and modulating the same processes during inflammatory (LPS) processes.  相似文献   

2.
It is established that the modulation of beta(3)-adrenoceptor function could be associated with impairment of lipolysis in white fat and be responsible for disturbed lipid metabolism. Though two isoforms of nitric oxide synthase (NOS) were reported in adipocytes, the role of nitric oxide (NO) in adipose tissue is still ambiguous. The present work was directed to study the interplay between NO production and beta-adrenoceptor/cyclic AMP (cAMP) pathway on lipid mobilization (glycerol and nonesterified fatty acids, NEFA) in cultures of rat adipocytes isolated from epididymal white adipose tissue. beta-Nonselective (isoprenaline) and beta(3)-selective (BRL-37344) agonists and the postadrenoceptor agents such as dibutyryl-cAMP, forskolin, and 3-isobutyl-1-methylxanthine significantly increased nitrite, glycerol, and NEFA levels with BRL-37344 being the most potent. Conversely, addition of beta-nonselective (propranolol) or beta(3)-selective (bupranolol) antagonist or the adenylyl cyclase inhibitor (SQ 22,536) significantly reduced beta-agonist-induced NO production and lipolysis. For beta-adrenoceptor agonists, antagonists, and their pairs, there was a positive correlation between medium nitrite and glycerol or NEFA with r(2) being 0.90 and 0.84, respectively. The possible relationship between NO and lipolysis was revealed after adipocyte treatment with nonspecific (N(omega)-nitro-l-arginine methyl ester, l-NAME) and specific (aminoguanidine) NOS inhibitors. Both l-NAME and aminoguanidine significantly inhibited the lipolytic effect of BRL-37344. Moreover, NO-donor (S-nitroso-N-acetylpenicillamine) at higher concentration increased basal glycerol and NEFA levels. 8-bromo-cyclic GMP had no effect on adipocyte lipolysis. These data suggest that beta-adrenergic lipolysis, specifically beta(3)-adrenoceptor effect, which is realized via the adenylyl cyclase/cAMP/protein kinase A signaling cascade, involves NO production downstream of beta(3)-adrenoceptor/cAMP pathway.  相似文献   

3.
The aim of this study was to determine the mechanism of troglitazone action on nitric oxide (NO) production via inducible NO synthase (iNOS) in adipocytes in vitro and in vivo. The treatment of 3T3-L1 adipocytes with the combination of lipopolysaccharide (LPS), tumor necrosis factor-alpha and interferon-gamma synergistically induced de novo iNOS expression leading to enhanced NO production. The NO production was inhibited by co-treatment with aminoguanidine or N-nitro-L-arginine methylester hydrochloride. Troglitazone inhibited the NO production in a dose dependent manner by the suppression of iNOS expression. In the 24 week-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats, the mean weight and the blood glucose were 21% and 30%, respectively, higher than in their lean counterparts. The serum nitrite concentration was increased after injection of LPS (4 mg/kg, i.p.), more markedly in OLETF rats than in the lean rats. The epididymal fats from LPS-injected groups, but not the ones from the non-injected groups, expressed mRNA and protein of iNOS. Troglitazone pre-treatment blocked the LPS-induced expression of iNOS in adipose tissue and the increase in serum nitrite concentration. These results suggest that troglitazone inhibits the cytokine-induced NO production in adipocytes by blocking iNOS expression both in vitro and in vivo.  相似文献   

4.
5.
6.
Siberian hamsters (Phodopus sungorus) exhibit a naturally occurring, reversible seasonal obesity with body fat peaking in long "summerlike" days (LDs) and reaching a nadir in short "winterlike" days (SDs). These SD-induced decreases in adiposity are mediated largely via sympathetic nervous system (SNS) innervation of white adipose tissue (WAT), as indicated by increased WAT norepinephrine (NE) turnover. We examined whether SDs also increase sensitivity to NE-stimulated lipolysis. This was accomplished by measuring NE- and beta3-adrenoceptor (beta3-AR) agonist (BRL-37344)-induced lipolysis (glycerol release) as well as NE-induced cAMP accumulation by inguinal, epididymal, and retroperitoneal WAT (IWAT, EWAT, and RWAT) in isolated adipocytes of LD- and SD-housed hamsters. SDs increased potency/efficacy of NE-triggered lipolysis in a temporally and fat pad-specific manner. Thus when WAT pad mass decreased most rapidly (5 wk of SDs), potency (sensitivity/EC50) and efficacy (maximal response asymptote) of NE-stimulated lipolysis were increased for all WAT pads and also at 10 wk for IWAT compared with their LD counterparts. SD enhancement of lipolysis was similar for NE and BRL-37344 in IWAT adipocytes. These results, coupled with our previous demonstration that SDs upregulate WAT beta3-AR mRNA expression, suggest that increased beta3-ARs mediated the SD-induced increased NE sensitivity. NE-stimulated adipocyte accumulation of cAMP was greater after 5 wk of SDs for IWAT and EWAT and after 10 wk of SDs for IWAT compared with LDs, with no photoperiod effect for RWAT. Therefore, the SD-induced increase in SNS drive to WAT and increased sensitivity to this drive may work together to increase lipolysis in SDs.  相似文献   

7.
The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (beta(3)-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARgamma agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (相似文献   

8.
9.
Recently, peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been reported to increase endothelial NO, but the signaling mechanisms involved are unknown. Using troglitazone, a PPARgamma ligand known as an antidiabetic compound, we investigated the molecular mechanism of its effect on NO production in bovine aortic endothelial cells. Troglitazone increased endothelial NO production in a dose- and time-dependent manner with no alteration in endothelial nitric-oxide synthase (eNOS) expression. The maximal increase ( approximately 3.1-fold) was achieved with 20 microm troglitazone treatment for 12 h, and this increase was accompanied by increases in the expression of vascular endothelial growth factor (VEGF) and its receptor, KDR/Flk-1, and in Akt phosphorylation. Analysis with antibodies specific for each phosphorylated site demonstrated that troglitazone (20 microm treatment for 12 h) significantly increased both the phosphorylation of Ser(1179) of eNOS (eNOS-Ser(1179)) and the dephosphorylation of eNOS-Ser(116) but did not alter eNOS-Thr(497) phosphorylation. Treatment with anti-VEGF antibody to scavenge the increased VEGF induced by troglitazone partially inhibited troglitazone-stimulated NO production. This was accompanied by the attenuation of troglitazone-stimulated increases in the phosphorylation of Akt and eNOS-Ser(1179) with no alteration in eNOS-Ser(116) dephosphorylation. We also found that bisphenol A diglycidyl ether, a PPARgamma antagonist, partially inhibited troglitazone-stimulated NO production with a concomitant reduction in VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation but with no alteration in eNOS-Ser(116) dephosphorylation induced by troglitazone. Taken together, our results demonstrate that prolonged treatment with troglitazone increases endothelial NO production by at least two independent signaling pathways: PPARgamma-dependent, VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation and PPARgamma-independent, eNOS-Ser(116) dephosphorylation.  相似文献   

10.
11.
The lipolytic effects of norepinephrine (a non-selective β-agonist) and BRL 37344 (a selective β3-agonist) were compared in isolated rat brown and white adipocytes. Norepinephrine and BRL 37344 maximally stimulated lipolysis in brown and white adipocytes, approximately 10 times above basal values. However, adipocyte sensitivity for BRL 37344 was greater than that for norepinephrine, particularly in brown adipocytes [the EC50 values (nM) for BRL 37344 and norepinephrine were 5 ± 1 and 103 ± 31 in brown adipocytes (P <0.01) versus 56 ± 9 and 124 ± 17 in white adipocytes (P <0.05), respectively]. On the other hand, the lipolytic effects of norepinephrine were totally blocked by 20–40 times superior concentrations of propranolol or bupranolol in brown as well as in white adipocytes. In contrast, the lipolytic effects of BRL 37344 were fully inhibited by concentrations of propranolol or bupranolol that were 200–1000 superior to the β3 agonist concentration. The results demonstrate that: (1) the (β3-agonist BRL 37344 is as effective as norepinephrine for maximally stimulating lipolysis in rat brown and white adipocytes, (2) both adipocyte types are more sensitive to the lipolytic effects of BRL 37344 than to those of norepinephrine, (3) although bupranolol is a better antagonist than propranolol on BRL 37344-stimulated lipolysis, it cannot be considered as a specific β3-antagonist, (4) brown adipocytes are 10 times more sensitive than white adipocytes to the lipolytic effects of BRL 37344, suggesting an important role of β3-receptors in brown adipose tissue.  相似文献   

12.
13.
Adipose tissue is an active endocrine organ producing a variety of cytokines and chemokines, which may be involved in the deregulation of glucose and lipid homeostasis as well as in the inflammatory state observed in obesity. We have shown previously that differentiated human adipocytes secrete a variety of cytokines which are able to induce skeletal muscle insulin resistance. However, the regulation of these factors by anti-diabetic drugs has remained mainly undefined. Secretion of IL-6, IL-8, MIP-1alpha/beta, and MCP-1 by adipocytes was found to be downregulated by adiponectin. In parallel to adiponectin, the AMPK activator AICAR also decreased the secretion of most of the measured cytokines including IL-6 and MIP-1alpha/beta but not IL-8. In contrast, the thiazolidinedione troglitazone only slightly reduced cytokine secretion despite increasing the phosphorylation of AMPK. In conclusion, we show that adipocyte secretion is strongly inhibited by the anti-diabetic adipocyte hormone adiponectin, an effect that can also be mimicked by the AMPK activator AICAR. However, the PPARgamma agonist troglitazone is much less effective in reducing cytokine secretion.  相似文献   

14.
Inducible nitric oxide synthase modulates lipolysis in adipocytes   总被引:5,自引:0,他引:5  
The role of inducible nitric oxide synthase (iNOS) in the modulation of adipocyte lipolysis was investigated. Treatment of white and brown adipose cell lines and mouse adipose explants with a mixture of tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide (LPS) doubled the lipolytic rate, and this was associated with marked induction of iNOS expression and nitric oxide (NO) production. iNOS inhibition by 1400W, aminoguanidine, or L-NIL pretreatment further increased the cytokine/LPS-mediated lipolysis by 30% (P < 0.05) in cultured adipocytes and in adipose explants. However, this potentiating effect of iNOS inhibition was abolished in adipose explants isolated from iNOS knockout mice. Pharmacological inhibitors of adenylyl cyclase or protein kinase A reduced cytokine/LPS-induced lipolysis and also blunted the potentiating effect of iNOS inhibition on the lipolytic rate. Furthermore, addition of the antioxidants l-cystine and l-glutathione to cytokine/LPS-stimulated adipocytes mimicked the lipolytic effect of iNOS inhibition. In conclusion, inhibition of iNOS activity in adipocytes potentiates cytokine/LPS-induced lipolysis. This effect was fully reversed by adenylyl cyclase and protein kinase A inhibitors but was mimicked by cellular antioxidants. These data suggest that iNOS-mediated NO production counteracts cytokine/LPS-mediated lipolysis in adipocytes and that this feedback mechanism involves an oxidative process upstream of cAMP production in the signaling pathway.  相似文献   

15.
AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status. In adipocytes, stimuli that increase intracellular cyclic AMP (cAMP) have also been shown to increase the activity of AMPK. The precise molecular mechanisms responsible for cAMP-induced AMPK activation are not clear. Phosphodiesterase 3B (PDE3B) is a critical regulator of cAMP signaling in adipocytes. Here we investigated the roles of PDE3B, PDE4, protein kinase B (PKB) and the exchange protein activated by cAMP 1 (Epac1), as well as lipolysis, in the regulation of AMPK in primary rat adipocytes. We demonstrate that the increase in phosphorylation of AMPK at T172 induced by the adrenergic agonist isoproterenol can be diminished by co-incubation with insulin. The diminishing effect of insulin on AMPK activation was reversed upon treatment with the PDE3B specific inhibitor OPC3911 but not with the PDE4 inhibitor Rolipram. Adenovirus-mediated overexpression of PDE3B and constitutively active PKB both resulted in greatly reduced isoproterenol-induced phosphorylation of AMPK at T172. Co-incubation of adipocytes with isoproterenol and the PKA inhibitor H89 resulted in a total ablation of lipolysis and a reduction in AMPK phosphorylation/activation. Stimulation of adipocytes with the Epac1 agonist 8-pCPT-2′O-Me-cAMP led to increased phosphorylation of AMPK at T172. The general lipase inhibitor Orlistat decreased isoproterenol-induced phosphorylation of AMPK at T172. This decrease corresponded to a reduction of lipolysis from adipocytes. Taken together, these data suggest that PDE3B and PDE4 regulate cAMP pools that affect the activation/phosphorylation state of AMPK and that the effects of cyclic AMP on AMPK involve Epac1, PKA and lipolysis.  相似文献   

16.
A number of catecholamine and non-catecholamine beta-adrenoceptor agonists, including the lipolytically selective compound BRL 37344, were compared for lipolytic activity on human and rat adipocytes. On rat adipocytes, all compounds were full agonists, BRL 37344 being the most potent. On human adipocytes, only the catecholamines were full beta-adrenoceptor agonists. The other compounds were partial agonists, with intrinsic activities declining in the order fenoterol greater than salbutamol greater than clenbuterol greater than BRL 37344. This was the case with FFA- as well as with glycerol-production. Addition of 20 microM phentolamine did not enhance BRL 37344 activity. The isoprenaline- and BRL 37344-induced lipolysis on rat white adipocytes was stereoselectively antagonized by enantiomers of alprenolol, with atypical low potencies and stereoselectivity. It was concluded that (1) human and rat adipocyte beta-adrenoceptors mediating lipolysis are not essentially different, (2) partial agonism in human adipocytes is not explained by enhanced re-esterification and (3) BRL 37344 selectively stimulates rat adipocyte lipolysis.  相似文献   

17.
The plant-derived polyphenol resveratrol (RSV) modulates life span and metabolism, and it is thought that these effects are largely mediated by activating the deacetylase enzyme SIRT1. However, RSV also activates the cell energy sensor AMP-activated protein kinase (AMPK). We have previously reported that AMPK activators inhibit inducible nitric oxide synthase (iNOS), a key proinflammatory mediator of insulin resistance in endotoxemia and obesity. The aim of this study was to evaluate whether RSV inhibits iNOS induction in insulin target tissues and to determine the role of SIRT1 and AMPK activation in this effect. We found that RSV (40 mg/kg ip) treatment decreased iNOS induction and NO production in skeletal muscle and white adipose tissue, but not in liver, of endotoxin (LPS)-challenged mice. This effect of the polyphenol was recapitulated in vitro, where RSV (10-80 μM) robustly inhibited iNOS protein induction and NO production in cytokine/LPS-treated L6 myocytes and 3T3-L1 adipocytes. However, no effect of RSV was observed on iNOS induction in FAO hepatocytes. Further studies using inhibitors of SIRT1 revealed that the deacetylase enzyme is not involved in RSV action on iNOS. In marked contrast, RSV activates AMPK in L6 myocytes, and blunting its activation using Compound C or RNA interference partly blocked the inhibitory effect of RSV on NO production. These results show that RSV specifically inhibits iNOS induction in muscle through a mechanism involving AMPK but not SIRT1 activation. This anti-inflammatory action of RSV likely contributes to the therapeutic effect of this plant polyphenol.  相似文献   

18.
19.
Troglitazone is an antidiabetic agent that increases the insulin sensitivity of target tissues in non-insulin-dependent diabetes mellitus. It has been reported that troglitazone causes severe hepatic injury in certain individuals. In the present study, the mechanism for the hepatic injury by troglitazone was investigated with human hepatoma cell lines. HepG2 cells were incubated with troglitazone, its metabolites M-1 (sulfate), M-2 (gulucronide), M-3 (quinone), and other thiazolidinediones (pioglitazone and rosiglitazone). Troglitazone exhibited time- and concentration-dependent cytotoxicity and M-3 also exhibited weak cytotoxicity. Troglitazone induced apoptotic cell death characterized by internucleosomal DNA fragmentation and nuclear condensation. As other thiazolidinediones, pioglitazone and rosiglitazone, did not induce cell death and apoptosis in the present study, the affinity to PPARgamma may not affect the induction of apoptosis by troglitazone. These results suggest that troglitazone induces apoptotic hepatocyte death which it may be one of the factors of liver injury in humans.  相似文献   

20.
The aim of this study was to investigate the acute effects of troglitazone on several pathways of glucose and fatty acid (FA) partitioning and the molecular mechanisms involved in these processes in skeletal muscle. Exposure of L6 myotubes to troglitazone for 1 h significantly increased phosphorylation of AMPK and ACC, which was followed by approximately 30% and approximately 60% increases in palmitate oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity, respectively. Troglitazone inhibited basal ( approximately 25%) and insulin-stimulated ( approximately 35%) palmitate uptake but significantly increased basal and insulin-stimulated glucose uptake by approximately 2.2- and 2.7-fold, respectively. Pharmacological inhibition of AMPK completely prevented the effects of troglitazone on palmitate oxidation and glucose uptake. Interestingly, even though troglitazone exerted an insulin sensitizing effect, it reduced basal and insulin-stimulated rates of glycogen synthesis, incorporation of glucose into lipids, and glucose oxidation to values corresponding to approximately 30%, approximately 60%, and 30% of the controls, respectively. These effects were accompanied by an increase in basal and insulin-stimulated phosphorylation of Akt(Thr308), Akt(Ser473), and GSK3alpha/beta. Troglitazone also powerfully suppressed pyruvate decarboxylation, which was followed by a significant increase in basal ( approximately 3.5-fold) and insulin-stimulated ( approximately 5.5-fold) rates of lactate production by muscle cells. In summary, we provide novel evidence that troglitazone exerts acute insulin sensitizing effects by increasing FA oxidation, reducing FA uptake, suppressing pyruvate dehydrogenase activity, and shifting glucose metabolism toward lactate production in muscle cells. These effects seem to be at least partially dependent on AMPK activation and may account for potential acute PPAR-gamma-independent anti-diabetic effects of thiazolidinediones in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号