首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
《Autophagy》2013,9(6):664-665
Degradation through the lysosome involves careful orchestration of numerous molecular players in concert. Many of these key molecular players remain to be identified. We find that wild-type presenilins play a key role in degradation through the autophagy-lysosome system by modulating either fusion of autophagosomes to lysosomes or lysosome function.  相似文献   

2.
3.
Y Rong  M Liu  L Ma  W Du  H Zhang  Y Tian  Z Cao  Y Li  H Ren  C Zhang  L Li  S Chen  J Xi  L Yu 《Nature cell biology》2012,14(9):924-934
Autophagy is a lysosome-based degradation pathway. During autophagy, lysosomes fuse with autophagosomes to form autolysosomes. Following starvation-induced autophagy, nascent lysosomes are formed from autolysosomal membranes through an evolutionarily conserved cellular process, autophagic lysosome reformation (ALR), which is critical for maintaining lysosome homeostasis. Here we report that clathrin and phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulate ALR. Combining a screen of candidates identified through proteomic analysis of purified ALR tubules, and large-scale RNAi knockdown, we unveiled a tightly regulated molecular pathway that controls lysosome homeostasis, in which clathrin and PtdIns(4,5)P(2) are the central components. Our functional study demonstrates the central role of clathrin and its associated proteins in cargo sorting, phospholipid conversion, initiation of autolysosome tubulation, and proto-lysosome budding during ALR. Our data not only uncover a molecular pathway by which lysosome homeostasis is maintained through the ALR process, but also reveal unexpected functions of clathrin and PtdIns(4,5)P(2) in lysosome homeostasis.  相似文献   

4.
Autophagy is an intracellular pathway for the bulk degradation of cytoplasmic substances such as cytosol, protein aggregates and organelles. Autophagy is characterized by the formation of double-membrane bound vesicles called autophagosomes, which engulf the cargo and transport it to the vacuole/lysosome for breakdown and recycling. Even though several proteins in this pathway have been identified, little is known about the mechanism of action of these proteins during autophagosome biogenesis. In this review we briefly discuss recent findings on the molecular players and mechanisms involved in autophagosome formation. In particular, we will focus on the mechanisms regulating membrane recruitment as well as membrane remodeling during autophagosome formation.  相似文献   

5.
Microbiology of nitrogen cycle in animal manure compost   总被引:1,自引:0,他引:1  
Composting is the major technology in the treatment of animal manure and is a source of nitrous oxide, a greenhouse gas. Although the microbiological processes of both nitrification and denitrification are involved in composting, the key players in these pathways have not been well identified. Recent molecular microbiological methodologies have revealed the presence of dominant Bacillus species in the degradation of organic material or betaproteobacterial ammonia‐oxidizing bacteria on nitrification on the surface, and have also revealed the mechanism of nitrous oxide emission in this complicated process to some extent. Some bacteria, archaea or fungi still would be considered potential key players, and the contribution of some pathways, such as nitrifier denitrification or heterotrophic nitrification, might be involved in composting. This review article discusses these potential microbial players in nitrification–denitrification within the composting pile and highlights the relevant unknowns through recent activities that focus on the nitrogen cycle within the animal manure composting process.  相似文献   

6.
Lysosomal Ca2+ release channel TRPML1 has been suggested to regulate lysosome size by activating calmodulin (CaM). To further understand how TRPML1 and CaM regulate lysosome size, in this study, we report that inhibiting mTORC1 causes enlarged lysosomes, and the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. We also show that lysosome vacuolation induced by inhibiting TRPML1 is corrected by mTORC1 upregulation, and the facilitating effect of TRPML1 on the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. In the meantime, lysosome vacuolation induced by inhibiting CaM is corrected by mTORC1 upregulation, and mTORC1 overexpression corrects the inhibitory effect of CaM antagonist on the recovery of enlarged lysosomes. Conversely, the vacuolation induced by suppressing mTORC1 is not corrected by upregulating CaM. These data suggest that mTORC1 functions downstream of TRPML1 and CaM to regulate lysosome size. Together with our recent finding showing that TRPML1, CaM and mTORC1 form a macromolecular complex to control mTORC1 activity, we suggest that TRPML1 and CaM control lysosome fission through regulating mTORC1, identifying an mTORC1-dependent molecular mechanism for lysosomal membrane fission.  相似文献   

7.
Nature has always been efficient at saving energy and preventing waste. A good example of the thriftiness of nature is the recycling of receptors that mediate the transport of hydrolases to the lysosome in animal cells or to the vacuole in plants and fungi. By actively recycling these receptors, they are saved from degradation in the "garbage can" of the cell--the lysosome or vacuole. Until recently, this process has been relatively poorly understood. Now, through a fusion of yeast genetics and mammalian cell biology, new insights have been gained into the molecular mechanisms that underlie the endosome-to-Golgi membrane-trafficking pathway.  相似文献   

8.
EH proteins     
Endocytosis is a protein and lipid-trafficking pathway that occurs in all eukaryotic cells. It involves the internalization of plasma membrane proteins and lipids into the cell and the subsequent degradation of proteins in the lysosome or the recycling of proteins and lipids back to the plasma membrane. Over the past decade, studies in yeast and mammalian cells have revealed endocytosis to be a very complex molecular process that depends on regulated interactions between a variety of proteins and lipids. The Eps15 homology (EH) domain is a conserved, modular protein-interaction domain found in several endocytosis proteins. EH proteins can function as key regulators of endocytosis through their ability to interact with many of the other proteins involved in this process.  相似文献   

9.
Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are relatively new areas of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research.  相似文献   

10.
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.  相似文献   

11.
Yang Chen  Li Yu 《The EMBO journal》2015,34(17):2217-2218
Autophagic lysosome reformation (ALR) is a cellular process in which lysosomes are reformed through scission of proto‐lysosomes from tubular structures extruded from autolysosomes. Despite recent progress, the molecular mechanism of ALR is far from clear. A paper in this issue of The EMBO Journal has identified lysosome‐localized PI(3)P, which is generated by the VPS34–UVRAG complex in an mTOR‐dependent manner, as an important regulator of autolysosome tubule scission (Munson et al, 2015 ).  相似文献   

12.
13.
It has been known for decades that branching morphogenesis of the lung is mediated through reciprocal interactions between the epithelium and its underlying mesenchyme. In recent years, several key players, in particular members of the major signaling pathways that mediate this interaction, have been identified. Here, we review the genetic and molecular studies of these key components, which have provided a conceptual framework for understanding the interactions of these major signaling pathways in branching morphogenesis. The future challenge is to translate understanding of the signaling cascade into knowledge of the cellular responses, including cell proliferation, migration and differentiation, that lead to the stereotyped branching.*  相似文献   

14.
Positive regulation of epidermal growth factor receptor signalling is related to many human malignancies. Besides overexpression and gain of function mutations, the escape from negative regulation through an increase in epidermal growth factor receptor stability has evolved as yet another key factor contributing to enhanced receptor activity. Intensive research over the past years has provided considerable evidence concerning the molecular mechanisms which provide epidermal growth factor receptor degradation. c-Cbl mediated ubiquitination, endocytosis via clathrin-coated pits, endosomal sorting and lysosomal degradation have become well-investigated cornerstones. Recent findings on the interdependency of the endosomal sorting complexes required for transport in multivesicular body sorting, stress the topicality of receptor tyrosine kinase downregulation. Here, we review the degradation pathway of the epidermal growth factor receptor, following the receptor from ligand binding to the lysosome and illustrating different modes of oncogenic deregulation.  相似文献   

15.
自噬是一种在进化上保守的溶酶体依赖的降解途径.近十多年来,自噬过程的分子机制研究得到了长足的发展.自噬过程中关键蛋白复合物的乙酰化修饰发挥了十分重要的作用.为此,该文阐述了细胞自噬过程中主要蛋白复合物的乙酰化修饰作用进展,并对蛋白质乙酰化修饰与肿瘤、神经退行性疾病等的关系作一总结.总之,自噬过程中蛋白乙酰化修饰已经成为...  相似文献   

16.
The NLRP3 inflammasome is activated in the cytoplasm of cells and its products such as IL-1β are exported through a non-classical ER-Golgi pathway. Several mechanistically distinct models including exocytosis of secretory lysosomes, microvesicles (MVs) and extracellular vehicles (EVs) have been proposed for their release. In this study, we hypothesized that the NLRP3 inflammasome product, IL-1β in response to exogenously administrated and endogenously produced d-ribose stimulation is released via extracellular vesicles including EVs via a sphingolipid-mediated molecular mechanisms controlling lysosome and multivesicular body (MVB) interaction. First, we demonstrated that both endogenous and exogenous d-ribose induced NLRP3 inflammasome activation to produce IL-1β, which was released via EVs in podocytes. Then, we found that colocalization of marker MVB marker VPS16 with IL-1β within podocytes increased upon d-ribose stimulation, which was accompanied by decreased colocalization of lysosome marker Lamp-1 and VPS16, suggesting decrease in MVB inclusion of IL-1β due to reduced lysosome and MVB interaction. All these changes were mimicked and accelerated by lysosome v-ATPase inhibitor, bafilomycin. Moreover, ceramide in podocytes was found elevated upon d-ribose stimulation, and prior treatments of podocyte with acid sphingomyelinase (Asm) inhibitor, amitriptyline, acid ceramidase (AC) inducer, genistein, or AC CRISPR/cas9 activation plasmids were found to decrease d-ribose-induced ceramide accumulation, EVs release and IL-1β secretion due to reduced interactions of lysosome with MVBs. These results suggest that inflammasome-derived products such as IL-1β during d-ribose stimulation are released via EVs, in which lysosomal sphingolipid-mediated regulation of lysosome function plays an important role.  相似文献   

17.
先天性免疫监视机制的核心是通过模式识别受体(pattern recognition receptors,PRRs)识别病毒分子诱导抗病毒防御,使宿主免受感染。PRRs表达在不同类型细胞的不同细胞区室,包括细胞膜、内体膜、溶酶体膜和胞质。病毒进入细胞区室后将被一个或多个模式识别受体所识别并激活机体的免疫反应。主要对细胞质内模式识别受体视黄酸诱导基因I样受体(retinoic acid-inducible gene I(RIG-I)-like receptors,RLRs)、核苷酸结合寡聚化结构域样受体(nucleotide-binding oligomerization domain(NOD)-like receptors,NLRs)、DEXDc螺旋酶受体(DLRs)及最近发现的DNA模式识别分子——DAI(DNA-dependent activator of interferonregulatory factors)识别病毒核酸并诱导I型干扰素产生的分子机制作一综述。  相似文献   

18.
《Cellular signalling》2014,26(9):2030-2039
Transforming growth factor-β (TGF-β) signaling plays important roles in embryogenesis and tumorigenesis by controlling cell growth, differentiation and migration. The transmembrane prostate androgen-induced protein (TMEPAI) is elevated in several cancers. TMEPAI expression is induced by TGF-β signaling, and in turn, expression of TMEPAI negatively regulates TGF-β signaling, but the molecular mechanisms of TMEPAI induced TGF-β signaling inhibition are not well understood. Here we report that TMEPAI is localized to the lysosome and late endosome, and that association of TMEPAI with the E3 ubiquitin ligase Nedd4 is required for its transport to the lysosome. TMEPAI associates with the TGF-β type I receptor (TβRI) and promotes its degradation in the lysosome. Depletion of TMEPAI in A549 lung cancer cells inhibits cell proliferation, migration and invasion, while TMEPAI expression in nude mice promotes tumorigenesis. These results reveal a novel function for TMEPAI in regulating TGF-β signaling through the modulation of TβRI levels, which has important implications for cancer development in vivo.  相似文献   

19.
Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a “self-eating” process and plays a “house-cleaner” role in cells. The complex process consists of several sequential steps—induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.  相似文献   

20.
Lysosomes contain abundant ATP, which is released through lysosomal exocytosis following exposure to various stimuli. However, the molecular mechanisms underlying lysosomal ATP accumulation remain unknown. The vesicular nucleotide transporter, also known as solute carrier family 17 member 9 (SLC17A9), has been shown to function in ATP transport across secretory vesicles/granules membrane in adrenal chromaffin cells, T cells, and pancreatic cells. Here, using mammalian cell lines, we report that SLC17A9 is highly enriched in lysosomes and functions as an ATP transporter in those organelles. SLC17A9 deficiency reduced lysosome ATP accumulation and compromised lysosome function, resulting in cell death. Our data suggest that SLC17A9 activity mediates lysosomal ATP accumulation and plays an important role in lysosomal physiology and cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号