首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(8):883-891
Autophagic flux can be measured by determining the declining abundance of autophagic substrates such as sequestosome 1 (SQSTM1, better known as p62), which is sequestered in autophagosomes upon its direct interaction with LC3. However, the total amount of p62 results from two opposed processes, namely its synthesis (which can be modulated by some cellular stressors including autophagy inducers) and its degradation. To avoid this problem, we generated a stable cell line expressing a chimeric protein composed by p62 and the HaloTag® protein, which serves as a receptor for fluorescent HaloTag® ligands. Upon labeling with HaloTag® ligands (which form covalent, near-to-undissociable bonds with the Halotag® receptor) and washing, the resulting fluorescent labeling is not influenced by de novo protein synthesis, therefore allowing for the specific monitoring of the fusion protein decline without any interference by protein synthesis. We demonstrate that a HaloTag®-p62 fusion protein stably expressed in suitable cell lines can be used to monitor autophagy by flow cytometry and automated fluorescence microscopy. We surmise that this system could be adapted to high-throughput applications.  相似文献   

2.
Although cultured mammalian cells are preferred for producing functional mammalian proteins with appropriate post-translational modifications, purification of recombinant proteins is frequently hampered by low expression. We have addressed this by creating a new method configured specifically for mammalian cell culture that provides rapid detection and efficient purification. This approach is based on HaloTag, a protein fusion tag designed to bind rapidly, selectively and covalently to a series of synthetic ligands that can carry a variety of functional groups, including fluorescent dyes for detection or solid supports for purification. Since the binding of HaloTag to the HaloLink resin is essentially irreversible, it overcomes the equilibrium-based binding limitations associated with affinity tags and enables efficient capture and purification of target protein, even at low expression levels. The target protein is released from the HaloLink resin by specific cleavage using a TEV protease fused to HaloTag (HaloTEV), leaving both HaloTag and HaloTEV permanently attached to the resin and highly pure, tag-free protein in solution. HaloTag fluorescent ligands enable fluorescent labeling of HaloTag fusion proteins, providing a convenient way to monitor expression, and thus facilitate the identification of optimal transient transfection conditions as well as the selection of high expression stable cell lines. The capabilities of this method have been demonstrated by the efficient purification of five functional human kinases from HEK293T cells. In addition, when purifications using FLAG, 3xFLAG, His(6)Tag and HaloTag were performed in parallel, HaloTag was shown to provide significantly higher yields, purity and overall recovery of the expressed proteins.  相似文献   

3.
The envelope glycoprotein (Env) of human immunodeficiency virus type I (HIV-1) mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD) between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv) can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.  相似文献   

4.

Background

The ability to specifically label proteins within living cells can provide information about their dynamics and function. To study a membrane protein, we fused a multi-functional reporter protein, HaloTag®, to the extracellular domain of a truncated integrin.

Results

Using the HaloTag technology, we could study the localization, trafficking and processing of an integrin-HaloTag fusion, which we showed had cellular dynamics consistent with native integrins. By labeling live cells with different fluorescent impermeable and permeable ligands, we showed spatial separation of plasma membrane and internal pools of the integrin-HaloTag fusion, and followed these protein pools over time to study bi-directional trafficking. In addition to combining the HaloTag reporter protein with different fluorophores, we also employed an affinity tag to achieve cell capture.

Conclusion

The HaloTag technology was used successfully to study expression, trafficking, spatial separation and real-time translocation of an integrin-HaloTag fusion, thereby demonstrating that this technology can be a powerful tool to investigate membrane protein biology in live cells.  相似文献   

5.
Lysosomal degradative compartments hydrolyze macromolecules to generate basic building blocks that fuel metabolic pathways in our cells. They also remove misfolded proteins and control size, function, and number of cytoplasmic organelles via constitutive and regulated autophagy. These catabolic processes attract interest because their defective functioning is linked to human disease and their molecular components are promising pharmacologic targets. The capacity to quantitatively assess them is highly sought-after. Here we present a tandem-fluorescent reporter consisting of a HaloTag-GFP chimera appended at the C- or at the N-terminus of select polypeptides to monitor protein and organelle delivery to the lysosomal compartment. The Halo-GFP changes color on fluorescent pulse with cell-permeable HaloTag ligands and, again, on delivery to acidic, degradative lysosomal compartments, where the fluorescent ligand-associated HaloTag is relatively stable, whereas the GFP portion is not, as testified by loss of the green fluorescence and generation of a protease-resistant, fluorescent HaloTag fragment. The Halo-GFP tandem fluorescent reporter presented in our study allows quantitative and, crucially, time-resolved analyses of protein and organelle transport to the lysosomal compartment by high resolution confocal laser scanning microscopy, antibody-free electrophoretic techniques and flow cytometry.  相似文献   

6.
HaloTag Interchangeable Labeling Technology (HaloTag) was originally developed for mammalian cell analysis. In this report, the use of HaloTag is demonstrated in plant cells for the first time. This system allows different fluorescent colours to be used to visualize the localization of the non-fluorescent HaloTag protein within living cells. A vector was constructed which expresses the HaloTag protein under the control of the 35S promoter of cauliflower mosaic virus. The functionality of the HaloTag construct was tested in transient assays by (i) transforming tobacco protoplasts and (ii) using biolistic transformation of intact leaf cells of tobacco and poplar plants. Two to fourteen days after transformation, the plant material was incubated with ligands specific for labelling the HaloTag protein, and fluorescence was visualized by confocal laser scanning microscopy. The results demonstrate that HaloTag technology is a flexible system which generates efficient fluorescence in different types of plant cells. The ligand-specific labelling of HaloTag protein was not hampered by the plant cell wall.  相似文献   

7.
G protein-coupled receptors (GPCRs) play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase) to the N-terminal end of the receptor (HT-GPCR). HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin) and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.  相似文献   

8.
Autophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action. Notably, Dp44mT affected autophagy by two mechanisms. First, concurrent with its antiproliferative activity, Dp44mT increased the expression of the classical autophagic marker LC3-II as a result of induced autophagosome synthesis. Second, this effect was supplemented by a reduction in autophagosome degradation as shown by the accumulation of the autophagic substrate and receptor p62. Conversely, the classical iron chelator desferrioxamine induced autophagosome accumulation only by inhibiting autophagosome degradation. The formation of redox-active iron or copper Dp44mT complexes was critical for its dual effect on autophagy. The cytoprotective antioxidant N-acetylcysteine inhibited Dp44mT-induced autophagosome synthesis and p62 accumulation. Importantly, Dp44mT inhibited autophagosome degradation via lysosomal disruption. This effect prevented the fusion of lysosomes with autophagosomes to form autolysosomes, which is crucial for the completion of the autophagic process. The antiproliferative activity of Dp44mT was suppressed by Beclin1 and ATG5 silencing, indicating the role of persistent autophagosome synthesis in Dp44mT-induced cell death. These studies demonstrate that Dp44mT can overcome the prosurvival activity of autophagy in cancer cells by utilizing this process to potentiate cell death.  相似文献   

9.
《Autophagy》2013,9(5):732-733
Selective degradation of intracellular targets, such as misfolded proteins and damaged organelles, is an important homeostatic function that autophagy has acquired in addition to its more general role in restoring the nutrient balance during stress and starvation. Although the exact mechanism underlying selection of autophagic substrates is not known, ubiquitination is a candidate signal for autophagic degradation of misfolded and aggregated proteins. p62/SQSTM1 was the first protein shown to bind both target-associated ubiquitin (Ub) and LC3 conjugated to the phagophore membrane, thereby effectively acting as an autophagic receptor for ubiquitinated targets. Importantly, p62 not only mediates selective degradation but also promotes aggregation of ubiquitinated proteins that can be harmful in some cell types. Is p62 the only autophagic receptor for selective autophagy? Looking for proteins that interact with ATG8 family proteins, we identified NBR1 (neighbor of BRCA1 gene 1) as an additional LC3- and Ub-binding protein. NBR1 is degraded by autophagy depending on its LC3-interacting region (LIR) but does not strictly require p62 for this process. Like p62, NBR1 accumulates and aggregates when autophagy is inhibited and is a part of pathological inclusions. We propose that NBR1 together with p62 promotes autophagic degradation of ubiquitinated targets and simultaneously regulates their aggregation when autophagy becomes limited.  相似文献   

10.
Over-expression and purification of soluble and functional proteins remain critical challenges for many aspects of biomolecular research. To address this, we have developed a novel protein tag, HaloTag7, engineered to enhance expression and solubility of recombinant proteins and to provide efficient protein purification coupled with tag removal. HaloTag7 was designed to bind rapidly and covalently with a unique synthetic linker to achieve an essentially irreversible attachment. The synthetic linker may be attached to a variety of entities such as fluorescent dyes and solid supports, permitting labeling of fusion proteins in cell lysates for expression screening, and efficient capture of fusion proteins onto a purification resin. The combination of covalent capture with rapid binding kinetics overcomes the equilibrium-based limitations associated with traditional affinity tags and enables efficient capture even at low expression levels. Following immobilization on the resin, the protein of interest is released by cleavage at an optimized TEV protease recognition site, leaving HaloTag7 bound to the resin and pure protein in solution. Evaluation of HaloTag7 for expression of 23 human proteins in Escherichia coli relative to MBP, GST and His6Tag revealed that 74% of the proteins were produced in soluble form when fused to HaloTag7 compared to 52%, 39% and 22%, respectively, for the other tags. Using a subset of the test panel, more proteins fused to HaloTag7 were successfully purified than with the other tags, and these proteins were of higher yield and purity.  相似文献   

11.
Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.  相似文献   

12.
The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules to bind a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic group on its surface. Hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated and transmembrane HaloTag fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting Hras1(G12V)-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small-molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models.  相似文献   

13.
There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high‐throughput (HT) methods, we transferred the genes of 31 full‐length proteins into three expression vectors, and expressed the collection as N‐terminal HaloTag fusion proteins in Escherichia coli and two commercial cell‐free (CF) systems, wheat germ extract (WGE) and HeLa cell extract (HCE). Expression was assessed by labeling the fusion proteins specifically and covalently with a fluorescent HaloTag ligand and detecting its fluorescence on a LabChip® GX microfluidic capillary gel electrophoresis instrument. This automated, HT assay provided both qualitative and quantitative assessment of recombinant protein. E. coli was only capable of expressing 20% of the test collection in the supernatant fraction with ≥20 μg yields, whereas CF systems had ≥83% success rates. We purified expressed proteins using an automated HaloTag purification method. We purified 20, 33, and 42% of the test collection from E. coli, WGE, and HCE, respectively, with yields ≥1 μg and ≥90% purity. Based on these observations, we have developed a triage strategy for producing full‐length human proteins in these three expression systems.  相似文献   

14.
《Autophagy》2013,9(4):401-411
PML-RARα oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-α (RARα) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RARα degradation which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RARα degradation. Inhibition of autophagy by short hairpin (sh) RNA that target essential autophagy genes such as Atg1, Atg5 and PI3KC3 and by autophagy inhibitors (e.g. 3-methyladenine), blocked PML-RARα degradation and subsequently granulocytic differentiation of human myeloid leukemic cells. In contrast, rapamycin, the mTOR kinase inhibitor, enhanced autophagy and promoted ATRA-induced PML-RARα degradation and myeloid cell differentiation. Moreover, PML-RARα co-immunoprecipitated with ubiquitin-binding adaptor protein p62/SQSTM1, which is degraded through autophagy. Furthermore, knockdown of p62/SQSTM1 inhibited ATRA-induced PML-RARα degradation and myeloid cell differentiation. The identification of PML-RARα as a target of autophagy provides new insight into the mechanism of action of ATRA and its specificity for APL.  相似文献   

15.
16.
《Autophagy》2013,9(6):784-793
Macroautophagy (hereafter referred to as autophagy) is a catabolic pathway to isolate and transport cytosolic components to the lysosome for degradation. Recently, autophagy receptors, like p62/SQSTM1 and NBR1, which physically link autophagic cargo to ATG8/MAP1-LC3/GABARAP family members located on the forming autophagic membranes, have been identified. To identify conditions or compounds that affect autophagy cell systems that efficiently report on autophagic flux are required. Here we describe reporter cell systems based on induced expression of GFP-p62, GFP-NBR1 or GFP-LC3B. The degradation of the fusion proteins was followed after promoter shut off by flow cytometry of live cells. All three fusion proteins were degraded at a basal rate by autophagy. Surprisingly, the basal degradation rate varied for the three reporter fusion proteins. GFP-LC3B was the most stable protein. GFP-NBR1 was most efficiently degraded under basal conditions while degradation of GFP-p62 displayed the strongest response to amino acid starvation. GFP-p62 was found to perform best of the tested reporters. Single cell analysis of autophagic flux by flow cytometry allows estimates of heterogeneous cell populations. The feasibility of this approach was demonstrated using transient overexpression of a dominant negative ULK1 kinase and siRNA-mediated knock-down of LC3B to inhibit autophagic degradation of GFP-p62. The inducible GFP-p62 cell system allows quantification by several approaches and will be useful in screening for compounds or conditions that affect the rate of autophagy. Inducers of autophagy can be identified using rich medium whereas inhibitors are identified under starvation conditions.  相似文献   

17.
Wang Z  Cao L  Kang R  Yang M  Liu L  Zhao Y  Yu Y  Xie M  Yin X  Livesey KM  Tang D 《Autophagy》2011,7(4):401-411
PML-RARα oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-α (RARα) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RARα degradation which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RARα degradation. Inhibition of autophagy by short hairpin (sh) RNA that target essential autophagy genes such as Atg1, Atg5 and PI3KC3 and by autophagy inhibitors (e.g. 3-methyladenine), blocked PML-RARα degradation and subsequently granulocytic differentiation of human myeloid leukemic cells. In contrast, rapamycin, the mTOR kinase inhibitor, enhanced autophagy and promoted ATRA-induced PML-RARα degradation and myeloid cell differentiation. Moreover, PML-RARα co-immunoprecipitated with ubiquitin-binding adaptor protein p62/SQSTM1, which is degraded through autophagy. Furthermore, knockdown of p62/SQSTM1 inhibited ATRA-induced PML-RARα degradation and myeloid cell differentiation. The identification of PML-RARα as a target of autophagy provides new insight into the mechanism of action of ATRA and its specificity for APL.  相似文献   

18.
Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease.  相似文献   

19.
As a signaling hub, p62/sequestosome plays important roles in cell signaling and degradation of misfolded proteins. p62 has been implicated as an adaptor protein to mediate autophagic clearance of insoluble protein aggregates in age-related diseases, including age-related macular degeneration (AMD), which is characterized by dysfunction of the retinal pigment epithelium (RPE). Our previous studies have shown that cigarette smoke (CS) induces oxidative stress and inhibits the proteasome pathway in cultured human RPE cells, suggesting that p62-mediated autophagy may become the major route to remove impaired proteins under such circumstances. In the present studies, we found that all p62 mRNA variants are abundantly expressed and upregulated by CS induced stress in cultured human RPE cells, yet isoform1 is the major translated form. We also show that p62 silencing exacerbated the CS induced accumulation of damaged proteins, both by suppressing autophagy and by inhibiting the Nrf2 antioxidant response, which in turn, increased protein oxidation. These effects of CS and p62 reduction were further confirmed in mice exposed to CS. We found that over-expression of p62 isoform1, but not its S403A mutant, which lacks affinity for ubiquitinated proteins, reduced misfolded proteins, yet simultaneously promoted an Nrf2-mediated antioxidant response. Thus, p62 provides dual, reciprocal enhancing protection to RPE cells from environmental stress induced protein misfolding and aggregation, by facilitating autophagy and the Nrf2 mediated antioxidant response, which might be a potential therapeutic target against AMD.  相似文献   

20.
《Autophagy》2013,9(9):993-1010
(Macro)autophagy encompasses both an unselective, bulk degradation of cytoplasmic contents as well as selective autophagy of damaged organelles, intracellular microbes, protein aggregates, cellular structures and specific soluble proteins. Selective autophagy is mediated by autophagic adapters, like p62/SQSTM1 and NBR1. p62 and NBR1 are themselves selective autophagy substrates, but they also act as cargo receptors for degradation of other substrates. Surprisingly, we found that homologs of NBR1 are distributed throughout the eukaryotic kingdom, while p62 is confined to the metazoans. As a representative of all organisms having only an NBR1 homolog we studied Arabidopsis thaliana NBR1 (AtNBR1) in more detail. AtNBR1 is more similar to mammalian NBR1 than to p62 in domain architecture and amino acid sequence. However, similar to p62, AtNBR1 homo-polymerizes via the PB1 domain. Hence, AtNBR1 has hybrid properties of mammalian NBR1 and p62. AtNBR1 has 2 UBA domains, but only the C-terminal UBA domain bound ubiquitin. AtNBR1 bound AtATG8 through a conserved LIR (LC3-interacting region) motif and required co-expression of AtATG8 or human GABARAPL2 to be recognized as an autophagic substrate in HeLa cells. To monitor the autophagic sequestration of AtNBR1 in Arabidopsis we made transgenic plants expressing AtNBR1 fused to a pH-sensitive fluorescent tag, a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive yellow fluorescent proteins. This strategy allowed us to show that AtNBR1 is an autophagy substrate degraded in the vacuole dependent on the polymerization property of the PB1 domain and of expression of AtATG7. A functional LIR was required for vacuolar import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号