首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holliday R 《DNA Repair》2011,10(10):993-999
This article is an overview of the author's involvement in theoretical and experimental research on genetic recombination and DNA repair, and also on the enzymic modification of cytosine in DNA to 5-methyl cytosine. It includes the history of the discovery of the central intermediate in genetic recombination at the DNA level, and the repair of mismatched bases. These explain the major features of genetic fine structure. The first repair and recombination defective mutants in any eukaryote were isolated in the smut fungus Ustilago maydis. The hypothesis that DNA methylation has a role in gene expression in higher organism is now supported by abundant evidence. Direct evidence that gene silencing in mammalian cells is causally related to DNA methylation has been obtained.  相似文献   

2.
The eukaryotic cell is faced with more than 10 000 various kinds of DNA lesions per day. Failure to repair such lesions can lead to mutations, genomic instability, or cell death. Therefore, cells have developed 5 major repair pathways in which different kinds of DNA damage can be detected and repaired: homologous recombination, nonhomologous end joining, nucleotide excision repair, base excision repair, and mismatch repair. However, the efficient repair of DNA damage is complicated by the fact that the genomic DNA is packaged through histone and nonhistone proteins into chromatin, a highly condensed structure that hinders DNA accessibility and its subsequent repair. Therefore, the cellular repair machinery has to circumvent this natural barrier to gain access to the damaged site in a timely manner. Repair of DNA lesions in the context of chromatin occurs with the assistance of ATP-dependent chromatin-remodeling enzymes and histone-modifying enzymes, which allow access of the necessary repair factors to the lesion. Here we review recent studies that elucidate the interplay between chromatin modifiers / remodelers and the major DNA repair pathways.  相似文献   

3.
Affinity separation and enrichment methods in proteomic analysis   总被引:2,自引:0,他引:2  
Protein separation or enrichment is one of the rate-limiting steps in proteomic studies. Specific capture and removal of highly-abundant proteins (HAP) with large sample-handling capacities are in great demand for enabling detection and analysis of low-abundant proteins (LAP). How to grasp and enrich these specific proteins or LAP in complex protein mixtures is also an outstanding challenge for biomarker discovery and validation. In response to these needs, various approaches for removal of HAP or capture of LAP in biological fluids, particularly in plasma or serum, have been developed. Among them, immunoaffinity subtraction methods based upon polyclonal IgY or IgG antibodies have shown to possess unique advantages for proteomic analysis of plasma, serum and other biological samples. In addition, other affinity methods that use recombinant proteins, lectins, peptides, or chemical ligands have also been developed and applied to LAP capture or enrichment. This review discusses in detail the need to put technologies and methods in affinity subtraction or enrichment into a context of proteomic and systems biology as "Separomics" and provides a prospective of affinity-mediated proteomics. Specific products, along with their features, advantages, and disadvantages will also be discussed.  相似文献   

4.
Affinity modification of EcoRII DNA methyltransferase (M x EcoRII) by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine (Crib*) or 1-(beta-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M x EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M x EcoRII region. Our results support the theoretically predicted DNA binding region of M x EcoRII.  相似文献   

5.
The activity of human replication protein A (RPA) in DNA replication and repair is regulated by phosphorylation of the middle RPA2 subunit. It has previously been shown that up to nine different N-terminal residues are modified in vivo and in response to genotoxic stress. Using a novel antibody against phospho-Ser(29), a moiety formed by cyclin-Cdk, we observed that RPA2 was phosphorylated during mitosis in nonstressed cells. Robust phosphorylation of Ser(29) was also seen in interphase cells following treatment with the DNA-damaging agent camptothecin, a rare example of stress stimulating the modification of a repair factor by cyclin-Cdk. RPA2 phosphorylation is regulated both in cis and trans. Cis-phosphorylation follows a preferred pathway. (That is, the initial modification of Ser(33) by ATR stimulates subsequent phosphorylation of Cdk sites Ser(23) and Ser(29)). These events then facilitate modification of Thr(21) and extreme N-terminal sites Ser(4) and Ser(8), probably by DNA-PK. Our data also indicate that the phosphorylation of one RPA molecule can influence the phosphorylation of other RPA molecules in trans. Cells in which endogenous RPA2 was "replaced" with a double S23A/S29A-RPA2 mutant were seen to have an abnormal cell cycle distribution both in normal and in stressed cells. Such cells also showed aberrant DNA damage-dependent RPA foci and had persistent staining of gammaH2AX following DNA damage. Our data indicate that RPA phosphorylation facilitates chromosomal DNA repair. We postulate that the RPA phosphorylation pattern provides a means to regulate the DNA repair pathway utilized.  相似文献   

6.
7.
An unknown protein reacted with anti-human IgA, namely, IgA-like protein, has been reported in shrimp, but information regarding its identification is not available. In the present study, an affinity proteomic strategy was applied to identify the IgA-like protein of shrimp Litopenaeus vannamei. The protein of 75 kDa was isolated and confirmed by affinity chromatography and Western blotting with goat anti-human IgA, respectively, and then identified as hemocyanin, a member of IgSF, by mass spectrometry. Moreover, our results showed that human IgA and L. vannamei hemocyanin could separately react with goat anti-human IgA or rabbit anti-shrimp affinity hemocyanin (a-hemocyanin). Further evidences indicated that the recombinant protein of the Ig-like conserved domain could react with anti-human IgA. Interestingly, our results indicated that L. vannamei hemocyanin could aggregate with eight species of shrimp pathogenic bacteria and four types of animal erythrocytes directly. These results indicate that L. vannamei hemocyanin, an IgA-like protein, has dual function of reaction with anti-human IgA as an antigen and of activity binding to bacteria and animal erythrocytes as an agglutinin, suggesting its characteristic role as an IgSF molecule. In addition, our approach suggests that affinity proteomics based on heterogeneous antibody can speed up the identification of Fossman antigens.  相似文献   

8.
Affinity modification of E. coli DNA polymerase I and its Klenow fragment by imidazolides of dNMP (Im-dNMP) and dNTP was studied. DNA polymerase activity of DNA polymerase I was reduced by both Im-dNMP and Im-dNTP. However Im-dNTP does not inactivate of the Klenow fragment. The level of covalent labelling of both enzymes by radioactive Im-dNTP did not exceed 0.01 mol of reagent per mol of enzyme. But the deep inactivation of DNA polymerase I by Im-dNTP was observed. It is likely that this inactivation is due to the formation of intramolecular ether followed by phosphorylation of the carboxyl group. This assumption is strongly supported by the increase of the isoelectrical point of DNA polymerase I after its incubation with Im-dNTP in conditions of enzyme inactivation. All data permit us to suggest that the affinity modification of both enzymes by Im-dNMP and covalent labeling by Im-dNTP takes place without complementary binding of dNTP moiety with the template. However inactivation of DNA polymerase I by Im-dNTP occurs only if the dNTP-moiety is complementary to the template in the template.primer complex. It was shown that His residue was phosphorylated by Im-dNMP and Tyr or Ser residues between Met-802 and Met-848 were phosphorylated by Im-dNTP. We suppose that there are two states of DNA polymerase active site for the binding of dNTPs. One of them is independent on the template, in the other state the dNTP hydrogen bond with the template is formed.  相似文献   

9.
10.
The development of a protein-mediated dual functional affinity adsorption of plasmid DNA is described in this work. The affinity ligand for the plasmid DNA comprises a fusion protein with glutathione-S-transferase (GST) as the fusion partner with a zinc finger protein. The protein ligand is first bound to the adsorbent by affinity interaction between the GST moeity and gluthathione that is covalently immobilized to the base matrix. The plasmid binding is then enabled via the zinc finger protein and a specific nucleotide sequence inserted into the DNA. At lower loadings, the binding of the DNA onto the Fractogel, Sepharose, and Streamline matrices was 0.0078 +/- 0.0013, 0.0095 +/- 0.0016, and 0.0080 +/- 0.0006 mg, respectively, to 50 microL of adsorbent. At a higher DNA challenge, the corresponding amounts were 0.0179 +/- 0.0043, 0.0219 +/- 0.0035, and 0.0190 +/- 0.0041 mg, respectively. The relatively constant amounts bound to the three adsorbents indicated that the large DNA molecule was unable to utilize the available zinc finger sites that were located in the internal pores and binding was largely a surface adsorption phenomenon. Utilization of the zinc finger binding sites was shown to be highest for the Fractogel adsorbent. The adsorbed material was eluted with reduced glutathione, and the eluted efficiency for the DNA was between 23% and 27%. The protein elution profile appeared to match the adsorption profiles with significantly higher recoveries of bound GST-zinc finger protein.  相似文献   

11.
Helicases are a family of enzymes that play an essential role in nearly all DNA metabolic processes, catalyzing the transient opening of DNA duplexes. These motor proteins couple the chemical energy of ATP binding and hydrolysis to the separation of the complementary strands of a DNA or RNA duplex substrate. A full understanding of their mechanism of DNA unwinding can be achieved only through careful investigation of the thermodynamic and kinetic parameters that control this ATP-driven process, as well as through analysis of the helicases' tertiary and quaternary structures associated with nucleic acids and/or nucleotide recognition. This review describes the various biochemical, biophysical, and, more recently, proteomic techniques that have been developed to shed light on the still controversial, and in some aspects elusive, helicase-catalyzed mechanism of DNA unwinding.  相似文献   

12.
13.
Many modeling studies of supercoiled DNA are based on equilibrium structures from theoretical calculations or energy minimization. Since closed circular DNAs are flexible, it is possible that errors are introduced by calculating properties from a single minimum energy structure, rather than from a complete thermodynamic ensemble. We have investigated this question using molecular dynamics simulations on a low resolution molecular mechanics model in which each base pair is represented by three points (a plane). This allows the inclusion of sequence-dependent variations of tip, inclination, and twist. Three kinds of sequences were tested: (1) homogeneous DNA, in which all base pairs have the helicoidal parameters of an ideal, average B-DNA; (2) random sequence DNA; and (3) curved DNA. We examined the rate of convergence of various structural parameters. Convergence for most of these is slowest for homogeneous sequences, more rapid for random sequences, and most rapid for curved sequences. The most slowly converging parameter is the antipodes profile. In a plasmid with N base pairs (bp), the antipodes distance is the distance d ij from base pair i to base pair j halfway around the plasmid, j = i + N/2. The antipodes profile at time t is a plot of d ij over the range i = 1, N/2. In a homogeneous plasmid, convergence requires that the antipodes profile averaged over time must be flat. Even in the small plasmids examined here, the average properties of the ensembles were found to differ from those of static equilibrium structures. These effects will be even more dramatic for larger plasmids. Further, average and dynamic properties are affected by both plasmid size and sequence. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
To clarify roles of an endogenous pain modulatory system of the central nervous system (CNS) in hyperalgesia, we tried to identify qualitative and quantitative protein changes by a proteomic analysis using an animal model of hyperalgesia. Specifically, we first induced functional hyperalgesia on male Wistar rats by repeated cold stress (specific alternation of rhythm in temperature, SART). We then compared proteomes of multiple regions of CNS and the dorsal root ganglion between the hyperalgetic rats and non-treated ones by 2-D PAGE in the pI range of 4.0-7.0. We found that SART changed the proteomes prominently in the mesencephalon and cerebellum. We thus analyzed the two brain regions in more detail using gels with narrower pI ranges. As a result, 29 and 23 protein spots were significantly changed in the mesencephalon and the cerebellum, respectively. We successfully identified 12 protein spots by a MALDI-TOF/TOF MS and subsequent protein database searching. They included unc-18 protein homolog 67K, collapsin response mediator protein (CRMP)-2 and CRMP-4, which were reported to be involved in neurotransmitter release or axon elongation. Interestingly, mRNA expression levels of these three proteins were not changed significantly by the induction of hyperalgesia. Instead, we found that the detected changes in the protein spots are caused by the post-translational modification (PTM) of proteolysis or phosphorylation. Taken together, development of the hyperalgesia would be linked to PTM of these three CNS proteins. PTM regulation may be one of the useful ways to treat hyperalgesia.  相似文献   

15.
Synthetic N‐methyl imidazole and N‐pyrrole containing polyamides (PAs) that can form “stacked” dimers can be programmed to target and bind to specific DNA sequences and control gene expression. To accomplish this goal, the development of PAs with lower molecular mass which allows for the molecules to rapidly penetrate cells and localize in the nucleus, along with increased water solubility, while maintaining DNA binding sequence specificity and high binding affinity is key. To meet these challenges, six novel f‐ImPy*Im PA derivatives that contain different orthogonally positioned moieties were designed to target 5′‐ACGCGT‐3′. The synthesis and biophysical characterization of six f‐ImPy*Im were determined by CD, ΔTM, DNase I footprinting, SPR, and ITC studies, and were compared with those of their parent compound, f‐ImPyIm. The results gave evidence for the minor groove binding and selectivity of PAs 1 and 6 for the cognate sequence 5′‐ACGCGT‐3′, and with strong affinity, Keq = 2.8 × 108 M?1 and Keq = 6.2 × 107 M?1, respectively. The six novel PAs presented in this study demonstrated increased water solubility, while maintaining low molecular mass, sequence specificity, and binding affinity, addressing key issues in therapeutic development. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 497–507, 2013.  相似文献   

16.
17.
18.
Summary Hereditary defects in DNA repair can be detected by chromosomal instability. In the course of routine search such a chromosomal abnormality was recognized prenatally. The defect was verified after the birth of the child, with lymphocytes as well as with cells grown in cell culture (skin fibroblasts and cells from the umbilical cord).  相似文献   

19.
In studying DNA repair in thymocytes of irradiated rats it was shown that the increase in radiation dose from 2 to 20 Gy made DNA damages increase in number and caused changes in their spectrum and growth of irreparable damages. The one-hour study of DNA repair process exhibited its fast, median and slow phases.  相似文献   

20.
Seo JB  Kim HS  Jung GY  Nam MH  Chung JH  Kim JY  Yoo JS  Kim CW  Kwon O 《Proteomics》2004,4(11):3654-3659
Psychrophilicity of Gram-positive bacterium, Bacillus psychrosaccharolyticus was investigated in a proteomic approach. One hundred and thirty-one protein spots were analyzed by electrospray ionization-quadrupole-time of flight-tandem mass spectrometry and identified using an unpublished translated contig database as well as a nonredundant Gram-positive bacteria protein database from NCBI because of the lack of a genome sequence of this organism. Results focused on proteomic behavior of cold-response show that global up-regulation of metabolic functions and protective mechanism by stress responses might play a major role in psychrophilicity of B. psychrosaccharolyticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号