首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative studies of codistributed taxa test the degree to which historical processes have shaped contemporary population structure. Discordant patterns of lineage divergence among taxa indicate that species differ in their response to common historical processes. The complex geologic landscape of the Isthmus of Central America provides an ideal setting to test the effects of vicariance and other biogeographic factors on population history. We compared divergence patterns between two codistributed Neotropical frogs ( Dendropsophus ebraccatus and Agalychnis callidryas ) that exhibit colour pattern polymorphisms among populations, and found significant differences between them in phenotypic and genetic divergence among populations. Colour pattern in D. ebraccatus did not vary with genetic or geographic distance, while colour pattern co-varied with patterns of gene flow in A. callidryas . In addition, we detected significant species differences in the phylogenetic history of populations, gene flow among them, and the extent to which historical diversification and recent gene flow have been restricted by five biogeographic barriers in Costa Rica and Panama. We inferred that alternate microevolutionary processes explain the unique patterns of diversification in each taxon. Our study underscores how differences in selective regimes and species-typical ecological and life-history traits maintain spatial patterns of diversification.  相似文献   

2.
Recently, new phylogenetic comparative methods have been proposed to test for the association of biological traits with diversification patterns, with species ecological “niche” being one of the most studied traits. In general, these methods implicitly assume natural selection acting at the species level, thus implying the mechanism of species selection. However, natural selection acting at the organismal level could also influence diversification patterns (i.e., effect macroevolution). Owing to our scarce knowledge on multi-level selection regarding niche as a trait, we propose a conceptual model to discuss and guide the test between species selection and effect macroevolution within a hierarchical framework. We first assume niche as an organismal as well as a species’ trait that interacts with the environment and results in species-level differential fitness. Then, we argue that niche heritability, a requirement for natural selection, can be assessed by its phylogenetic signal. Finally, we propose several predictions that can be tested in the future by disentangling both types of evolutionary processes (species selection or effect macroevolution). Our framework can have important implications for guiding analyses that aim to understand the hierarchical perspective of evolution.  相似文献   

3.
Evolutionary theory predicts that selection in distinct microhabitats generates correlations between morphological and ecological traits, and may increase both phenotypic and taxonomic diversity. However, some microhabitats exert unique selective pressures that act as a restraining force on macroevolutionary patterns of diversification. In this study, we use phylogenetic comparative methods to investigate the evolutionary outcomes of inhabiting the arboreal microhabitat in salamanders. We find that arboreality has independently evolved at least five times in Caudata and has arisen primarily from terrestrial ancestors. However, the rate of transition from arboreality back to terrestriality is 24 times higher than the converse. This suggests that macroevolutionary trends in microhabitat use tend toward terrestriality over arboreality, which influences the extent to which use of the arboreal microhabitat proliferates. Morphologically, we find no evidence for an arboreal phenotype in overall body proportions or in foot shape, as variation in both traits overlaps broadly with species that utilize different microhabitats. However, both body shape and foot shape display reduced rates of phenotypic evolution in arboreal taxa, and evidence of morphological convergence among arboreal lineages is observed. Taken together, these patterns suggest that arboreality has played a unique role in the evolution of this family, providing neither an evolutionary opportunity, nor an evolutionary dead end.  相似文献   

4.
We analysed the influence of ecological factors, phylogenetic history and trade-offs between traits on the life-history variation among 10 loricariid species of the middle Paraná River. We measured eight life-history variables and classified the life-history strategies following the equilibrium–periodic–opportunistic (EPO) model. Principal-component analysis of life-history traits segregated species along a gradient from small opportunistic (low fecundity, low parental investment) to large equilibrium (low-medium fecundity, high parental investment) species. A clear periodic strategist was absent in the analysed assemblage. Variation partitioning by canonical phylogenetic ordination analysis showed both a component of variation uniquely explained by phylogenetic history (PH; 32.2%) and a component shared between PH and ecological factors (EF; 37%). The EPO model is a useful tool for predicting correlations among life-history traits and understanding potential demographic responses of species to environmental variation. Life-history patterns observed throughout Loricariidae suggests that this family has diversified across all three endpoint strategies of the EPO model. Our study indicates that evolutionary lineage affiliation at the level of subfamily can be a strong predictor of the life-history strategy used by each species.  相似文献   

5.
Some major evolutionary theories predict a relationship between rates of proliferation of new species (species diversification) and rates of morphological divergence between them. However, this relationship has not been rigorously tested using phylogeny-based approaches. Here, we test this relationship with morphological and phylogenetic data from 190 species of plethodontid salamanders. Surprisingly, we find that rates of species diversification and morphological evolution are not significantly correlated, such that rapid diversification can occur with little morphological change, and vice versa. We also find that most clades have undergone remarkably similar patterns of morphological evolution (despite extensive sympatry) and that those relatively novel phenotypes are not associated with rapid diversification. Finally, we find a strong relationship between rates of size and shape evolution, which has not been previously tested.  相似文献   

6.
The disparity in species richness among groups of organisms is one of the most pervasive features of life on earth. A number of studies have addressed this pattern across higher taxa (e.g. 'beetles'), but we know much less about the generality and causal basis of the variation in diversity within evolutionary radiations at lower taxonomic scales. Here, we address the causes of variation in species richness among major lineages of Australia's most diverse vertebrate radiation, a clade of at least 232 species of scincid lizards. We use new mitochondrial and nuclear intron DNA sequences to test the extent of diversification rate variation in this group. We present an improved likelihood-based method for estimating per-lineage diversification rates from combined phylogenetic and taxonomic (species richness) data, and use the method in a hypothesis-testing framework to localize diversification rate shifts on phylogenetic trees. We soundly reject homogeneity of diversification rates among members of this radiation, and find evidence for a dramatic rate increase in the common ancestor of the genera Ctenotus and Lerista. Our results suggest that the evolution of traits associated with climate tolerance may have had a role in shaping patterns of diversity in this group.  相似文献   

7.
1. Colonization success of species when confronted with novel environments is of interest in ecological, evolutionary and conservation contexts. Such events may represent the first step for ecological diversification. They also play an important role in adaptive divergence and speciation. 2. A species that is able to do well across a range of environments has a higher plasticity than one whose success is restricted to a single or few environments. The breadth of environments in which a species can succeed is ultimately determined by the full pattern of its vital rates in each environment. 3. Examples of organisms colonizing novel environments are insect herbivores expanding their diets to novel host plants. One expectation for insect herbivores is that species with specialized diets may display less plasticity when faced with novel hosts than generalist species. 4. We examine this hypothesis for two generalist and two specialist neotropical beetles (genus Cephaloleia: Chrysomelidae) currently expanding their diets from native to novel plants of the order Zingiberales. Using an experimental approach, we estimated changes in vital rates, life-history traits and lifetime fitness for each beetle species when feeding on native or novel host plants. 5. We did not find evidence supporting more plasticity for generalists than for specialists. Instead, we found similar patterns of survival and fecundity for all herbivores. Larvae survived worse on novel hosts; adults survived at least as well or better, but reproduced less on the novel host than on natives. 6. Some of the novel host plants represent challenging environments where population growth was negative. However, in four novel plant-herbivore interactions, instantaneous population growth rates were positive. 7. Positive instantaneous population growth rates during initial colonization of novel host plants suggest that both generalist and specialist Cephaloleia beetles may be pre-adapted to feed on some novel hosts. This plasticity in host use is a key factor for successful colonization of novel hosts. Future success or failure in the colonization of these novel hosts will depend on the demographic rates described in this research, natural selection and the evolutionary responses of life-history traits in novel environments.  相似文献   

8.
The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘C-value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.  相似文献   

9.
It has been suggested that phenotypic plasticity can facilitate evolutionary diversification of organisms. If life-history and morphological diversification across a lineage is mirrored in diversification in the same traits due to phenotypic plasticity within a lineage it fulfils one of the expectations that are needed to support this diversification hypothesis. We carried out a laboratory study to examine development rate and morphology between and within populations of the parsley frog, Pelodytes punctatus. We found that frogs reared in the laboratory had a longer development time, relatively longer hind legs and relatively narrower heads under constant water level compared to those under decreasing water level simulating pool drying. This adaptive phenotypic plasticity response to pool drying was mirrored across populations because frogs from permanent waters had longer development times, relatively longer hind legs and relatively narrower heads compared to frogs from temporary waters. Hence the developmental and morphological plasticity observed within populations was also observed between populations as constitutive expressed traits. We suggest that the morphology pattern observed was driven by a common developmental process (time to metamorphosis), indicating that plasticity may contribute to evolutionary change, ultimately resulting in genetic accommodation of the morphological traits.  相似文献   

10.
We present the most extensive examination to date of proposed correlates of species richness. We use rigorous phylogenetic comparative techniques, data for 1,692 mammal species in four clades, and multivariate statistics to test four hypotheses about species richness and compare the evidence for each. Overall, we find strong support for the life-history model of diversification. Species richness is significantly correlated with shorter gestation period in the carnivores and large litter size in marsupials. These traits and short interbirth intervals are also associated with species richness in a pooled analysis of all four clades. Additionally, we find some support for the abundance hypotheses in different clades of mammals: abundance correlates positively with species richness in primates but negatively in microchiropterans. Our analyses provide no evidence that mammalian species richness is associated with body size or degree of sexual dimorphism.  相似文献   

11.
One of the primary goals of macroevolutionary biology has been to explain general trends in long‐term diversity patterns, including whether such patterns correspond to an upscaling of processes occurring at lower scales. Reconstructed phylogenies often show decelerated lineage accumulation over time. This pattern has often been interpreted as the result of diversity‐dependent (DD) diversification, where the accumulation of species causes diversification to decrease through niche filling. However, other processes can also produce such a slowdown, including time dependence without diversity dependence. To test whether phylogenetic branching patterns can be used to distinguish these two mechanisms, we formulated a time‐dependent, but diversity‐independent model that matches the expected diversity through time of a DD model. We simulated phylogenies under each model and studied how well likelihood methods could recover the true diversification mode. Standard model selection criteria always recovered diversity dependence, even when it was not present. We correct for this bias by using a bootstrap method and find that neither model is decisively supported. This implies that the branching pattern of reconstructed trees contains insufficient information to detect the presence or absence of diversity dependence. We advocate that tests encompassing additional data, for example, traits or range distributions, are needed to evaluate how diversity drives macroevolutionary trends.  相似文献   

12.
It is widely assumed that phenotypic traits can influence rates of speciation and extinction, and several statistical approaches have been used to test for correlations between character states and lineage diversification. Recent work suggests that model‐based tests of state‐dependent speciation and extinction are sensitive to model inadequacy and phylogenetic pseudoreplication. We describe a simple nonparametric statistical test (“FiSSE”) to assess the effects of a binary character on lineage diversification rates. The method involves computing a test statistic that compares the distributions of branch lengths for lineages with and without a character state of interest. The value of the test statistic is compared to a null distribution generated by simulating character histories on the observed phylogeny. Our tests show that FiSSE can reliably infer trait‐dependent speciation on phylogenies of several hundred tips. The method has low power to detect trait‐dependent extinction but can infer state‐dependent differences in speciation even when net diversification rates are constant. We assemble a range of macroevolutionary scenarios that are problematic for likelihood‐based methods, and we find that FiSSE does not show similarly elevated false positive rates. We suggest that nonparametric statistical approaches, such as FiSSE, provide an important complement to formal process‐based models for trait‐dependent diversification.  相似文献   

13.
An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that life-history evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time.  相似文献   

14.
Morphological integration describes the degree to which sets of organismal traits covary with one another. Morphological covariation may be evaluated at various levels of biological organization, but when characterizing such patterns across species at the macroevolutionary level, phylogeny must be taken into account. We outline an analytical procedure based on the evolutionary covariance matrix that allows species-level patterns of morphological integration among structures defined by sets of traits to be evaluated while accounting for the phylogenetic relationships among taxa, providing a flexible and robust complement to related phylogenetic independent contrasts based approaches. Using computer simulations under a Brownian motion model we show that statistical tests based on the approach display appropriate Type I error rates and high statistical power for detecting known levels of integration, and these trends remain consistent for simulations using different numbers of species, and for simulations that differ in the number of trait dimensions. Thus, our procedure provides a useful means of testing hypotheses of morphological integration in a phylogenetic context. We illustrate the utility of this approach by evaluating evolutionary patterns of morphological integration in head shape for a lineage of Plethodon salamanders, and find significant integration between cranial shape and mandible shape. Finally, computer code written in R for implementing the procedure is provided.  相似文献   

15.
The eutherian placenta shows remarkable evolutionary plasticity. To date, however, success in identifying selection pressures behind the observed diversity of placental structures has been limited. Evolutionary convergence among definitive placental morphologies and between placental morphologies and life-history variables can be used to suggest functions of derived aspects of placentation. In this paper, we use, for the first time, a comprehensive phylogenetic comparative approach to map phenotypic character states of both placental morphologies and life-history characteristics of species onto hypotheses of phylogenetic relationships in Eutheria. We employ phylogenetic methods for ancestral reconstruction, mutational mapping, and association analysis to resolve associations between five aspects of placental structure and to identify dominant combinations, or syndromes, of placental morphology. We map twenty life-history characters onto the eutherian phylogeny to examine how they correlate, over evolutionary time, with the multivariate diversification of placental structures. We identify two distinct eutherian constellations, based on associations between life-history and placental structure, which broadly reflect a dichotomy between slow and fast life-history strategies. In addition, we suggest that the observed association between placental invasiveness and group size is indicative of the effect of social behavior on the utility of genomic-imprinting in eutherian evolution.  相似文献   

16.
Rates of climatic niche evolution vary widely across the tree of life and are strongly associated with rates of diversification among clades. However, why the climatic niche evolves more rapidly in some clades than others remains unclear. Variation in life history traits often plays a key role in determining the environmental conditions under which species can survive, and therefore, could impact the rate at which lineages can expand in available climatic niche space. Here, we explore the relationships among life-history variation, climatic niche breadth, and rates of climatic niche evolution. We reconstruct a phylogeny for the genus Desmognathus, an adaptive radiation of salamanders distributed across eastern North America, based on nuclear and mitochondrial genes. Using this phylogeny, we estimate rates of climatic niche evolution for species with long, short, and no aquatic larval stage. Rates of climatic niche evolution are unrelated to the mean climatic niche breadth of species with different life histories. Instead, we find that the evolution of a short larval period promotes greater exploration of climatic space, leading to increased rates of climatic niche evolution across species having this trait. We propose that morphological and physiological differences associated with variation in larval stage length underlie the heterogeneous ability of lineages to explore climatic niche space. Rapid rates of climatic niche evolution among species with short larval periods were an important dimension of the clade's adaptive radiation and likely contributed to the rapid rate of lineage accumulation following the evolution of an aquatic life history in this clade. Our results show how variation in a key life-history trait can constrain or promote divergence of the climatic niche, leading to variation in rates of climatic niche evolution among species.  相似文献   

17.
Despite the diversity of mammalian life histories, persistent patterns of covariation have been identified, such as the ‘fast–slow’ axis of life-history covariation. Smaller species generally exhibit ‘faster’ life histories, developing and reproducing rapidly, but dying young. Hormonal mechanisms with pleiotropic effects may mediate such broad patterns of life-history variation. Insulin-like growth factor 1 (IGF-1) is one such mechanism because heightened IGF-1 activity is related to traits associated with faster life histories, such as increased growth and reproduction, but decreased lifespan. Using comparative methods, we show that among 41 mammalian species, increased plasma IGF-1 concentrations are associated with fast life histories and altricial reproductive patterns. Interspecific path analyses show that the effects of IGF-1 on these broad patterns of life-history variation are through its direct effects on some individual life-history traits (adult body size, growth rate, basal metabolic rate) and through its indirect effects on the remaining life-history traits. Our results suggest that the role of IGF-1 as a mechanism mediating life-history variation is conserved over the evolutionary time period defining mammalian diversification, that hormone–trait linkages can evolve as a unit, and that suites of life-history traits could be adjusted in response to selection through changes in plasma IGF-1.  相似文献   

18.
In drawing up Red Lists, the extinction risks of butterflies and other insects are currently assessed mainly by using information on trends in distribution and abundance. Incorporating information on species traits may increase our ability to predict species responses to environmental change and, hence, their vulnerability. We summarized ecologically relevant life-history and climatic niche traits in principal components, and used these to explain the variation in five vulnerability indicators (Red List status, Endemicity, Range size, Habitat specialisation index, Affinity for natural habitats) for 397 European butterfly species out of 482 species present in Europe. We also evaluated a selection of 238 species to test whether phylogenetic correction affected these relationships. For all but the affinity for natural habitats, climatic niche traits predicted more variation in vulnerability than life-history traits; phylogenetic correction had no relevant influence on the findings. The life-history trait component reflecting mobility, development rate, and overwintering stage, proved the major non-climatic determinant of species vulnerability. We propose that this trait component offers a preferable alternative to the frequently used, but ecologically confusing generalist-specialist continuum. Our analysis contributes to the development of trait-based approaches to prioritise vulnerable species for conservation at a European scale. Further regional scale analyses are recommended to improve our understanding of the biological basis of species vulnerability.  相似文献   

19.
Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns.  相似文献   

20.
Recent progress in the development of phylogenetic methods and access to molecular phylogenies has made comparative biology more popular than ever before. However, determining cause and effect in phylogenetic comparative studies is inherently difficult without experimentation and evolutionary replication. Here, we provide a roadmap for linking comparative phylogenetic patterns with ecological experiments to test causal hypotheses across ecological and evolutionary scales. As examples, we consider five cornerstones of ecological and evolutionary research: tests of adaptation, tradeoffs and synergisms among traits, coevolution due to species interactions, trait influences on lineage diversification, and community assembly and composition. Although several scenarios can result in a lack of concordance between historical patterns and contemporary experiments, we argue that the coupling of phylogenetic and experimental methods is an increasingly revealing approach to hypothesis testing in evolutionary ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号