首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Asthma is a disease of airway inflammation that in most cases fails to resolve. The resolution of inflammation is an active process governed by specific chemical mediators, including D-series resolvins. In this study, we determined the impact of resolvin D1 (RvD1) and aspirin-triggered RvD1 (AT-RvD1) on the development of allergic airway responses and their resolution. Mice were allergen sensitized, and RvD1, AT-RvD1 (1, 10, or 100 ng), or vehicle was administered at select intervals before or after aerosol allergen challenge. RvD1 markedly decreased airway eosinophilia and mucus metaplasia, in part by decreasing IL-5 and IκBα degradation. For the resolution of established allergic airway responses, AT-RvD1 was even more efficacious than RvD1, leading to a marked decrease in the resolution interval for lung eosinophilia, decrements in select inflammatory peptide and lipid mediators, and more rapid resolution of airway hyperreactivity to methacholine. Relative to RvD1, AT-RvD1 resisted metabolic inactivation by macrophages, and AT-RvD1 significantly enhanced macrophage phagocytosis of IgG-OVA-coated beads in vitro and in vivo, a new proresolving mechanism for the clearance of allergen from the airways. In conclusion, RvD1 and AT-RvD1 can serve as important modulators of allergic airway responses by decreasing eosinophils and proinflammatory mediators and promoting macrophage clearance of allergen. Together, these findings identify D-series resolvins as potential proresolving therapeutic agents for allergic responses.  相似文献   

3.
Immune responses are pathologically sustained in several common diseases, including asthma. To determine endogenous proresolving mechanisms for adaptive immune responses, we used a murine model of self-limited allergic airway inflammation. After cessation of allergen exposure, eosinophils and T cells were cleared concomitant with the appearance of increased numbers of NK cells in the lung and mediastinal lymph nodes. The mediastinal lymph node NK cells were activated, expressing CD27, CD11b, CD69, CD107a, and IFN-γ. NK cell depletion disrupted the endogenous resolution program, leading to delayed clearance of airway eosinophils and Ag-specific CD4(+) T cells. NK cell trafficking to inflamed tissues for resolution was dependent upon CXCR3 and CD62L. During resolution, eosinophils and Ag-specific CD4(+) T cells expressed NKG2D ligands, and a blocking Ab for the NKG2D receptor delayed clearance of these leukocytes. Of interest, NK cells expressed CMKLR1, a receptor for the proresolving mediator resolvin E1, and depletion of NK cells decreased resolvin E1-mediated resolution of allergic inflammation. Resolvin E1 regulated NK cell migration in vivo and NK cell cytotoxicity in vitro. Together, these findings indicate new functions in catabasis for NK cells that can also serve as targets for proresolving mediators in the resolution of adaptive immunity.  相似文献   

4.
The cellular events underlying the resolution of acute inflammation are not known in molecular terms. To identify anti-inflammatory and proresolving circuits, we investigated the temporal and differential changes in self-resolving murine exudates using mass spectrometry-based proteomics and lipidomics. Key resolution components were defined as resolution indices including Psi(max), the maximal neutrophil numbers that are present during the inflammatory response; T(max), the time when Psi(max) occurs; and the resolution interval (R(i)) from T(max) to T(50) when neutrophil numbers reach half Psi(max). The onset of resolution was at approximately 12 h with proteomic analysis showing both haptoglobin and S100A9 levels were maximal and other exudate proteins were dynamically regulated. Eicosanoids and polyunsaturated fatty acids first appeared within 4 h. Interestingly, the docosahexaenoic acid-derived anti-inflammatory lipid mediator 10,17S-docosatriene was generated during the R(i). Administration of aspirin-triggered lipoxin A(4) analog, resolvin E1, or 10,17S-docosatriene each either activated and/or accelerated resolution. For example, aspirin-triggered lipoxin A(4) analog reduced Psi(max), resolvin E1 decreased both Psi(max) and T(max), whereas 10,17S-docosatriene reduced Psi(max), T(max), and shortened R(i). Also, aspirin-triggered lipoxin A(4) analog markedly inhibited proinflammatory cytokines and chemokines at 4 h (20-50% inhibition), whereas resolvin E1 and 10,17S-docosatriene's inhibitory actions were maximal at 12 h (30-80% inhibition). Moreover, aspirin-triggered lipoxin A(4) analog evoked release of the antiphlogistic cytokine TGF-beta. These results characterize the first molecular resolution circuits and their major components activated by specific novel lipid mediators (i.e., resolvin E1 and 10,17S-docosatriene) to promote resolution.  相似文献   

5.
The resolution of inflammation is an active and dynamic process critical in maintaining homeostasis. Newly identified lipid mediators have been recognized as key players during the resolution phase. These specialized proresolving mediators (SPM) constitute separate families that include lipoxins, resolvins, protectins, and maresins, each derived from essential polyunsaturated fatty acids. New results demonstrate that SPM regulate aspects of the immune response, including reduction of neutrophil infiltration, decreased T cell cytokine production, and stimulation of macrophage phagocytic activity. The actions of SPM on B lymphocytes remain unknown. Our study shows that the novel SPM 17-hydroxydosahexaenoic acid (17-HDHA), resolvin D1, and protectin D1 are present in the spleen. Interestingly, 17-HDHA and resolvin D1, but not protectin D1, strongly increase activated human B cell IgM and IgG production. Furthermore, increased Ab production by 17-HDHA is due to augmented B cell differentiation toward a CD27(+)CD38(+) Ab-secreting cell phenotype. The 17-HDHA did not affect proliferation and was nontoxic to cells. Increase of plasma cell differentiation and Ab production supports the involvement of SPM during the late stages of inflammation and pathogen clearance. The present study provides new evidence for SPM activity in the humoral response. These new findings highlight the potential applications of SPM as endogenous and nontoxic adjuvants, and as anti-inflammatory therapeutic molecules.  相似文献   

6.
Inflammation is a defensive response to injury and infection, but excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of omega-3 polyunsaturated fatty acids (PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) indicate their beneficial impact on human diseases in which inflammation is suspected as a key component of the pathogenesis. Although the mechanism of EPA and DHA action is still not fully defined in molecular terms, recent studies have revealed that, during the course of acute inflammation, omega-3 PUFA-derived mediators including resolvins and protectins with potent anti-inflammatory and pro-resolving properties are produced. In this review, we provide an overview of the formation and actions of EPA-derived anti-inflammatory lipid mediator resolvin E1.  相似文献   

7.
Acute inflammation and its resolution are essential processes for tissue protection and homeostasis. In this context, specialized proresolving mediators derived from polyunsaturated fatty acids are of interest. In this study, we report that resolvin E2 (RvE2) from eicosapentaenoic acid is endogenously produced during self-limited murine peritonitis in both the initiation and resolution phases. RvE2 (1-10 nM) carries potent leukocyte-directed actions that include: 1) regulating chemotaxis of human neutrophils; and 2) enhancing phagocytosis and anti-inflammatory cytokine production. These actions appear to be mediated by leukocyte G-protein-coupled receptors as preparation of labeled RvE2 gave direct evidence for specific binding of radiolabeled RvE2 to neutrophils (K(d) 24.7 ± 10.1 nM) and resolvin E1 activation of recombinant G-protein-coupled receptors was assessed. In addition to the murine inflammatory milieu, RvE2 was also identified in plasma from healthy human subjects. RvE2 rapidly downregulated surface expression of human leukocyte integrins in whole blood and dampened responses to platelet-activating factor. Together, these results indicate that RvE2 can stimulate host-protective actions throughout initiation and resolution in the innate inflammatory responses.  相似文献   

8.
Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial Ags, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier; in recent years, numerous findings implicate an active role of the epithelium with proresolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and proresolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression, and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosal homeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to proresolving lipid mediators.  相似文献   

9.
Inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, are lifelong diseases that remain challenging to treat. IBDs are characterized by alterations in intestinal barrier function and dysregulation of the innate and adaptive immunity. An increasing number of lipids are found to be important regulators of inflammation and immunity as well as gut physiology. Therefore, the study of lipid mediators in IBDs is expected to improve our understanding of disease pathogenesis and lead to novel therapeutic opportunities. Here, through selected examples – such as fatty acids, specialized proresolving mediators, lysophospholipids, endocannabinoids, and oxysterols – we discuss how lipid signaling is involved in IBD physiopathology and how modulating lipid signaling pathways could affect IBDs.  相似文献   

10.
炎症反应是机体正常组织对感染和损伤的应答,然而过度的炎症反应往往会引起急性和慢性疾病的发生.最近研究发现,由n-3多不饱和脂肪酸二十碳五烯酸和二十二碳六烯酸代谢产生的resolvins和protectins两类化合物,具有很强的抗炎和炎症修复活性.综述了resolvins和protectin D1的来源、抗炎作用和抗炎机制,为进一步开展n-3多不饱和脂肪酸及其代谢产物的抗炎作用研究、为炎症的防治提供新的思路.  相似文献   

11.
Specialized proresolving mediators (SPMs) induce resolution of inflammation. SPMs are derivatives of n-3 and n-6 PUFAs and may mediate their beneficial effects. It is unknown whether supplementation with PUFAs influences the production of SPMs. Alzheimer’s disease (AD) is associated with brain inflammation and reduced levels of SPMs. The OmegAD study is a randomized, double-blind, and placebo-controlled clinical trial on AD patients, in which placebo or a supplement of 1.7 g DHA and 0.6 g EPA was taken daily for 6 months. Plasma levels of arachidonic acid decreased, and DHA and EPA levels increased after 6 months of n-3 FA treatment. Peripheral blood mononuclear cells (PBMCs) were obtained before and after the trial. Analysis of the culture medium of PBMCs incubated with amyloid-β 1–40 showed unchanged levels of the SPMs lipoxin A4 and resolvin D1 in the group supplemented with n-3 FAs, whereas a decrease was seen in the placebo group. The changes in SPMs showed correspondence to cognitive changes. Changes in the levels of SPMs were positively correlated to changes in transthyretin. We conclude that supplementation with n-3 PUFAs for 6 months prevented a reduction in SPMs released from PBMCs of AD patients, which was associated with changes in cognitive function.  相似文献   

12.
Resolvins of the D series are generated from docosahexaenoic acid, which are enriched in fish oils and are believed to exert beneficial roles on diverse inflammatory disorders, including inflammatory bowel disease (IBD). In this study, we investigated the anti-inflammatory effects of the aspirin-triggered resolvin D1 (AT-RvD1), its precursor (17(R)-hydroxy docosahexaenoic acid [17R-HDHA]) and resolvin D2 (RvD2) in dextran sulfate sodium (DSS)- or 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Our results showed that the systemic treatment with AT-RvD1, RvD2, or 17R-HDHA in a nanogram range greatly improved disease activity index, body weight loss, colonic damage, and polymorphonuclear infiltration in both colitis experimental models. Moreover, these treatments reduced colonic cytokine levels for TNF-α, IL-1β, MIP-2, and CXCL1/KC, as well as mRNA expression of NF-κB and the adhesion molecules VCAM-1, ICAM-1, and LFA-1. Furthermore, AT-RvD1, but not RvD2 or 17R-HDHA, depended on lipoxin A4 receptor (ALX) activation to inhibit IL-6, MCP-1, IFN-γ, and TNF-α levels in bone marrow-derived macrophages stimulated with LPS. Similarly, ALX blockade reversed the beneficial effects of AT-RvD1 in DSS-induced colitis. To our knowledge, our findings showed for the first time the anti-inflammatory effects of resolvins of the D series and precursor 17R-HDHA in preventing experimental colitis. We also demonstrated the relevant role exerted by ALX activation on proresolving action of AT-RvD1. Moreover, AT-RvD1 showed a higher potency than 17R-HDHA and RvD2 in preventing DSS-induced colitis. The results suggest that these lipid mediators possess a greater efficacy when compared with other currently used IBD therapies, such as monoclonal anti-TNF, and have the potential to be used for treating IBD.  相似文献   

13.
Inflammatory disorders such as sepsis are a major cause of morbidity and mortality. Mitochondrial dysfunction is considered a key factor in the pathogenesis of severe inflammation. In the present study, we aimed to investigate the impact of arachidonic acid, omega-3 (n-3) fatty acids, and n-3-derived lipid mediators 18R-HEPE and resolvin (Rv) E1 on mitochondrial function in experimental inflammation. The results revealed that, in contrast to n-6 and n-3 fatty acids, both 18R-HEPE and RvE1 possess anti-inflammatory and anti-apoptotic properties. Both mediators are able to restore inflammation-induced mitochondrial dysfunction, which is characterized by a decrease in mitochondrial respiration and membrane potential, as well as an imbalance of mitochondrial fission and fusion. Furthermore, inhibition of mitochondrial fission by Mdivi-1 and Dynasore reduces levels of the pro-inflammatory cytokines IL-6 and IL-8. These results suggest a novel functional mechanism for the beneficial effects of RvE1 in inflammatory reactions.  相似文献   

14.
Human mesenchymal stromal/stem cells (hMSCs) are used in experimental cell therapy to treat various immunological disorders, and the extracellular vesicles (hMSC-EVs) they produce have emerged as an option for cell-free therapeutics. The immunomodulatory function of hMSCs resembles the resolution of inflammation, in which proresolving lipid mediators (LMs) play key roles. Multiple mechanisms underlying the hMSC immunosuppressive effect has been elucidated; however, the impact of LMs and EVs in the resolution is poorly understood. In this study, we supplemented hMSCs with polyunsaturated fatty acids (PUFAs); arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which serve as precursors for multiple LMs. We then determined the consequent compositional modifications in the fatty acid, phospholipid, and LM profiles. Mass spectrometric analyses revealed that the supplemented PUFAs were incorporated into the main membrane phospholipid classes with different dynamics, with phosphatidylcholine serving as the first acceptor. Most importantly, the PUFA modifications were transferred into hMSC-EVs, which are known to mediate hMSC immunomodulation. Furthermore, the membrane-incorporated PUFAs influenced the LM profile by increasing the production of downstream prostaglandin E2 and proresolving LMs, including Resolvin E2 and Resolvin D6. The production of LMs was further enhanced by a highly proinflammatory stimulus, which resulted in an increase in a number of mediators, most notably prostaglandins, while other stimulatory conditions had less a pronounced impact after a 48-h incubation. The current findings suggest that PUFA manipulations of hMSCs exert significant immunomodulatory effects via EVs and proresolving LMs, the composition of which can be modified to potentiate the therapeutic impact of hMSCs.  相似文献   

15.
Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been implicated in the alleviation of asthma. Recent studies have demonstrated that the n-3 PUFA derived lipid mediators, protectin D1 and resolvin E1, may act as potent resolution agonists in airway inflammation. The effects of the n-3 PUFA tissue status itself on asthma pathogenesis remains to be further investigated. In this study allergic airway inflammation induced by allergen sensitization and aerosol challenge in Fat-1 and wild-type mice was investigated. Fat-1 transgenic mice displayed increased endogenous lung n-3 PUFA. When allergen-sensitized and aerosol-challenged, these animals had decreased airway inflammation with decreased leukocyte accumulation in bronchoalveolar lavage fluid and lung parenchyma. The Fat-1 mice had a shift to the right in the dose-response relationship for methacholine induced bronchoconstriction with a significant increase in the log ED200. The Fat-1 mice had lower BALF concentrations of the pro-inflammatory cytokines IL-1α, IL-2, IL-5, IL-9, IL-13, G-CSF, KC and RANTES. Furthermore, increased lung tissue amounts of the counter-regulatory mediators protectin D1 and resolvin E1 were found in Fat-1 mice after bronchoprovocative challenge. These results therefore demonstrate a direct protective role for lung n-3 PUFA in allergic airway responses and an increased generation of protectin D1 and resolvin E1 in this context.  相似文献   

16.
Retained respiratory tract (RT) secretions, infection, and exuberant inflammatory responses are core abnormalities in cystic fibrosis (CF) lung disease. Factors contributing to the destructive CF airway inflammatory processes remain incompletely characterized. The pro-oxidative inflammatory CF RT milieu is known to contain enzymatically and nonenzymatically produced regulatory lipid mediators, a panel of structurally defined oxidized metabolites of polyunsaturated fatty acids known to play a role in pathology related to inflammation. Using an extraction protocol that maximizes recoveries of sputum-spiked deuterated standards, coupled with an LC/MS/MS detection system, this study presents a metabolomic method to assess a broad spectrum of regulatory lipid mediators in freshly obtained sputum from CF patients. A broad range of both proinflammatory and anti-inflammatory lipid mediators was detected, including PGE2, PGD2, TXB2, LTB4, 6-trans-LTB4, 20-OH-LTB4, 20-COOH-LTB4, 20-HETE, 15-HETE, 11-HETE, 12-HETE, 8-HETE, 9-HETE, 5-HETE, EpETrEs, diols, resolvin E1, 15-deoxy-PGJ2, and LXA4. The vast majority of these oxylipins have not been reported previously in CF RT secretions. Whereas direct associations of individual proinflammatory lipid mediators with compromised lung function (FEV-1) were observed, the relationships were not robust. However, multiple statistical analyses revealed that the regulatory lipid mediators profile taken in aggregate proved to have a stronger association with lung function in relatively stable outpatient adult CF patients. Our data reveal a relative paucity of the anti-inflammatory lipid mediator lipoxin A4 in CF sputum. Patients displaying detectable levels of the anti-inflammatory lipid mediator resolvin E1 demonstrated a better lung function compared to those patients with undetectable levels. Our data suggest that comprehensive metabolomic profiling of regulatory lipid mediators in CF sputum should contribute to a better understanding of the molecular mechanisms underlying CF RT inflammatory pathobiology. Further studies are required to determine the extent to which nutritional or pharmacological interventions alter the regulatory lipid mediators profile of the CF RT and the impact of potential modulations of RT regulatory lipid mediators on the clinical progression of CF lung disease.  相似文献   

17.
The unprecedented increase in the prevalence of obesity and obesity-related disorders is causally linked to a chronic state of low-grade inflammation in adipose tissue. Timely resolution of inflammation and return of this tissue to homeostasis are key to reducing obesity-induced metabolic dysfunctions. In this study, with inflamed adipose, we investigated the biosynthesis, conversion, and actions of Resolvins D1 (RvD1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) and D2 (RvD2, 7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid), potent anti-inflammatory and proresolving lipid mediators (LMs), and their ability to regulate monocyte interactions with adipocytes. Lipid mediator-metabololipidomics identified RvD1 and RvD2 from endogenous sources in human and mouse adipose tissues. We also identified proresolving receptors (i.e., ALX/FPR2, ChemR23, and GPR32) in these tissues. Compared with lean tissue, obese adipose showed a deficit of these endogenous anti-inflammatory signals. With inflamed obese adipose tissue, RvD1 and RvD2 each rescued impaired expression and secretion of adiponectin in a time- and concentration-dependent manner as well as decreasing proinflammatory adipokine production including leptin, TNF-α, IL-6, and IL-1β. RvD1 and RvD2 each reduced MCP-1 and leukotriene B(4)-stimulated monocyte adhesion to adipocytes and their transadipose migration. Adipose tissue rapidly converted both resolvins (Rvs) to novel oxo-Rvs. RvD2 was enzymatically converted to 7-oxo-RvD2 as its major metabolic route that retained adipose-directed RvD2 actions. These results indicate, in adipose, D-series Rvs (RvD1 and RvD2) are potent proresolving mediators that counteract both local adipokine production and monocyte accumulation in obesity-induced adipose inflammation.  相似文献   

18.
Specialized pro‐resolving mediators actively limit inflammation and support tissue regeneration, but their role in age‐related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography‐tandem mass spectrometry and tested whether treatment with the pro‐resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro‐resolving mediators 8‐oxo‐RvD1, resolvin E3, and maresin 1, as well as many anti‐inflammatory cytochrome P450‐derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro‐inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2) and 12‐lipoxygenase (e.g., 12‐hydroxy‐eicosatetraenoic acid), but aged mice produced fewer markers of pro‐resolving mediators including the lipoxins (15‐hydroxy‐eicosatetraenoic acid), D‐resolvins/protectins (17‐hydroxy‐docosahexaenoic acid), E‐resolvins (18‐hydroxy‐eicosapentaenoic acid), and maresins (14‐hydroxy‐docosahexaenoic acid). Similar absences of downstream pro‐resolving mediators including lipoxin A4, resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro‐resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non‐steroidal anti‐inflammatory drugs.  相似文献   

19.
The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of "detrimental" MPs or through administration or stimulation of "favorable" MPs.  相似文献   

20.
We recently demonstrated that ω-3-polyunsaturated fatty acids ameliorate obesity-induced adipose tissue inflammation and insulin resistance. In this study, we report novel mechanisms underlying ω-3-polyunsaturated fatty acid actions on adipose tissue, adipocytes, and stromal vascular cells (SVC). Inflamed adipose tissue from high-fat diet-induced obese mice showed increased F4/80 and CD11b double-positive macrophage staining and elevated IL-6 and MCP-1 levels. Docosahexaenoic acid (DHA; 4 μg/g) did not change the total number of macrophages but significantly reduced the percentage of high CD11b/high F4/80-expressing cells in parallel with the emergence of low-expressing CD11b/F4/80 macrophages in the adipose tissue. This effect was associated with downregulation of proinflammatory adipokines in parallel with increased expression of IL-10, CD206, arginase 1, resistin-like molecule α, and chitinase-3 like protein, indicating a phenotypic switch in macrophage polarization toward an M2-like phenotype. This shift was confined to the SVC fraction, in which secretion of Th1 cytokines (IL-6, MCP-1, and TNF-α) was blocked by DHA. Notably, resolvin D1, an anti-inflammatory and proresolving mediator biosynthesized from DHA, markedly attenuated IFN-γ/LPS-induced Th1 cytokines while upregulating arginase 1 expression in a concentration-dependent manner. Resolvin D1 also stimulated nonphlogistic phagocytosis in adipose SVC macrophages by increasing both the number of macrophages containing ingested particles and the number of phagocytosed particles and by reducing macrophage reactive oxygen species production. No changes in adipocyte area and the phosphorylation of hormone-sensitive lipase, a rate-limiting enzyme regulating adipocyte lipolysis, were observed. These findings illustrate novel mechanisms through which resolvin D1 and its precursor DHA confer anti-inflammatory and proresolving actions in inflamed adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号