首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Huang C  Ito N  Tseng CT  Makino S 《Journal of virology》2006,80(15):7287-7294
Severe acute respiratory syndrome coronavirus (SCoV) 7a protein is one of the viral accessory proteins. In expressing cells, 7a protein exhibits a variety of biological activities, including induction of apoptosis, activation of the mitogen-activated protein kinase signaling pathway, inhibition of host protein translation, and suppression of cell growth progression. Analysis of SCoV particles that were purified by either sucrose gradient equilibrium centrifugation or a virus capture assay, in which intact SCoV particles were specifically immunoprecipitated by anti-S protein monoclonal antibody, demonstrated that 7a protein was associated with purified SCoV particles. Coexpression of 7a protein with SCoV S, M, N, and E proteins resulted in production of virus-like particles (VLPs) carrying 7a protein, while 7a protein was not released from cells expressing 7a protein alone. Although interaction between 7a protein and another SCoV accessory protein, 3a, has been reported, 3a protein was dispensable for assembly of 7a protein into VLPs. S protein was not required for the 7a protein incorporation into VLPs, and yet 7a protein interacted with S protein in coexpressing cells. These data established that, in addition to 3a protein, 7a protein was a SCoV accessory protein identified as a SCoV structural protein.  相似文献   

2.
Vitamin K-dependent protein S exists in two forms in plasma, as free protein and in a bimolecular, noncovalent complex with the regulatory complement protein C4b-binding protein (C4BP). The effects of C4BP on the protein Ca cofactor activity of protein S were studied in a plasma system and in a system using purified components from both human and bovine origin. Bovine protein S was found to interact with human C4BP with a 5-fold higher affinity than that observed for the interaction between human protein S and human C4BP. The binding of protein S, from either species, to human C4BP results in the loss of the protein Ca cofactor function. In bovine plasma, protein S could be totally complexed by the addition of human C4BP, with a concomitant total loss of protein Ca cofactor activity. The addition of purified human C4BP to human plasma resulted in only partial loss of protein Ca cofactor activity and the plasma protein S was not completely complexed. Human protein S functioned as a cofactor to human protein Ca, but not to bovine protein Ca, whereas bovine protein S demonstrated very little species specificity and functioned as a cofactor both with human and bovine protein Ca. The species specificity of the protein Ca-protein S interaction was useful in elucidating the effect of C4BP in the plasma system. In the system with purified bovine components, protein S was required for the degradation of factor Va by low concentrations of protein Ca, whereas in the system with human components protein Ca alone, even when added at very low concentrations, exhibited potential to degrade factor Va, and the presence of protein S only enhanced the reaction rate approximately 5-fold. In both these systems, the stimulating effect of protein S on factor Va degradation by protein Ca was completely lost when protein S bound to C4BP.  相似文献   

3.
Rational design of protein surface is important for creating higher order protein structures, but it is still challenging. In this study, we designed in silico the several binding interfaces on protein surfaces that allow a de novo protein–protein interaction to be formed. We used a computer simulation technique to find appropriate amino acid arrangements for the binding interface. The protein–protein interaction can be made by forming an intermolecular four-helix bundle structure, which is often found in naturally occurring protein subunit interfaces. As a model protein, we used a helical protein, YciF. Molecular dynamics simulation showed that a new protein–protein interaction is formed depending on the number of hydrophobic and charged amino acid residues present in the binding surfaces. However, too many hydrophobic amino acid residues present in the interface negatively affected on the binding. Finally, we found an appropriate arrangement of hydrophobic and charged amino acid residues that induces a protein–protein interaction through an intermolecular four-helix bundle formation.  相似文献   

4.
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed.  相似文献   

5.
Proteomics was used to identify a protein encoded by ORF 3a in a SARS-associated coronavirus (SARS-CoV). Immuno-blotting revealed that interchain disulfide bonds might be formed between this protein and the spike protein. ELISA indicated that sera from SARS patients have significant positive reactions with synthesized peptides derived from the 3a protein. These results are concordant with that of a spike protein-derived peptide. A tendency exists for co-mutation between the 3a protein and the spike protein of SARS-CoV isolates, suggesting that the function of the 3a protein correlates with the spike protein. Taken together, the 3a protein might be tightly correlated to the spike protein in the SARS-CoV functions. The 3a protein may serve as a new clinical marker or drug target for SARS treatment.  相似文献   

6.
It has previously been reported that protein complexity (i.e. number of subunits in a protein complex) is negatively correlated to gene duplicability in yeast as well as in humans. However, unlike in yeast, protein connectivity in a protein–protein interaction network has a positive correlation with gene duplicability in human genes. In the present study, we have analyzed 1732 human and 1269 yeast proteins that are present both in a protein–protein interaction network as well as in a protein complex network. In the human case, we observed that both protein connectivity and protein complexity complement each other in a mutually exclusive manner over gene duplicability in a positive direction. Analysis of human haploinsufficient proteins and large protein complexes (complex size >10) shows that when protein connectivity does not have any direct association with gene duplicability, there exists a positive correlation between gene duplicability and protein complexity. The same trend, however, is not found in case of yeast, where both protein connectivity and protein complexity independently guide gene duplicability in the negative direction. We conclude that the higher rate of duplication of human genes may be attributed to organismal complexity either by increasing connectivity in the protein–protein interaction network or by increasing protein complexity.  相似文献   

7.
Protein G, a cell wall protein isolated from human group G streptococci strain G148, binds in a similar manner as protein A from Staphylococcus aureus to the Fc portion of IgG molecules. Indeed, protein G has been proposed as a superior Fc binding protein due to its broader species reactivity. Thus, we have prepared a complex of protein G with particles of colloidal gold and determined its applicability for spot-blot analysis and postembedding immunolabeling by comparing it with protein A-gold complex. By spot-blot analysis no difference in binding of protein G-gold or protein A-gold to IgG molecules from a whole spectrum of animal species was observed. Moreover, using rabbit, sheep, or goat anti-rat albumin antibodies to detect nitrocellulose-immobilized rat albumin or antigenic sites in paraffin and Lowicryl K4M thin sections from rat liver, no difference was found with protein G-gold or protein A-gold. Similarly, no difference in binding to protein G-gold or protein A-gold was observed with a battery of monoclonal antibodies. However, in contrast to expectations, protein A-gold reacted well with both sheep and goat IgG molecules; indeed, for the light and electron microscopic localization of albumin with sheep or goat antibodies it was as efficient as protein G-gold. These results demonstrate, therefore, that both protein G-gold and protein A-gold are useful second step reagents for immunolabeling and that protein G-gold was not a superior probe in the systems tested.  相似文献   

8.
ABSTRACT. Protein phosphorylation events may play important roles in the replication and differentiation of the malarial parasite. Investigations into the lability of a Plasmodium protein kinase revealed that a 34 kDa parasite phosphoprotein is rapidly converted into a 19 kDa fragment. Coincident with this conversion is a nearly total loss of a protein kinase activity, as determined from the phosphorylation of endogenous protein substrates. Both the conversion of the 34 kDa protein to the 19 kDa protein and the loss of protein kinase activity are inhibited by thio-protease inhibitors. The presence of low levels of the intact 34 kDa protein restores the protein kinase activity to almost maximum levels. However, it was not possible to demonstrate protein kinase activity associated with the 34 kDa protein, thus suggesting that the 34 kDa protein is probably an activator or regulator of the protein kinase activity and not a protein kinase. The conversion to the 19 kDa fragment also occurs in vivo and only during the schizont stage prior to the appearance of ring forms. During this same period the protein kinase activity decreases suggesting that the proteolytic processing of the 34 kDa protein may be a physiological regulator of the protein kinase.  相似文献   

9.
A large amount of phosphate-binding protein, the phoS gene product, accumulated in the periplasmic space of the cells when an Escherichia coli strain carrying a multicopy plasmid containing a chromosomal fragment of the phoS-phoT region (pSN507) was grown in a low-phosphate medium. When the same strain carrying a plasmid containing only the phoS gene (pSN518 or pSN5182) was grown in low-phosphate medium, phosphate-binding protein accumulated in the periplasm, and in addition a larger protein accumulated in the non-periplasmic fraction. The apparent Mr of this protein and the phosphate-binding protein were 39000 and 35000 respectively, as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. This larger protein showed immunological cross-reaction with the phosphate-binding protein. The 39000-Mr protein was also detected in cells carrying pSN507 when the proteins were pulse-labeled with radioactive amino acids. From these findings, together with the fact that this protein is recovered from the membrane fraction, we conclude that this protein is an unsecreted precursor protein of the phosphate-binding protein. Kinetics and regulation of accumulation of these proteins were studied. This system will be useful for preparation and purification of the precursor protein for biochemical studies in relation to the mechanism of protein secretion.  相似文献   

10.
In eukaryotic cells ubiquitin is synthesized as a polyubiquitin protein or as a protein fused at the carboxyl terminus to other polypeptides. An enzyme activity, ubiquitin protein peptidase, has been proposed to process these precursors by cleaving the peptide bond between adjoining ubiquitin molecules or between ubiquitin and the fused peptides. Using the cleavage of a 35S-labeled yeast ubiquitin protein fused to a synthetic 38-residue peptide obtained by in vivo metabolic labeling in Escherichia coli in an expression system based on the interaction of bacteriophage T7 RNA polymerase and its promoter, it is possible to detect a processing activity in soluble yeast extract. The specificity of the cleavage suggests this activity could be the in vivo processing activity for various ubiquitin precursor proteins in yeast cells. A similarly labeled ubiquitin protein fused to one cysteine residue was also utilized to detect an activity capable of removing a single cysteine residue from ubiquitin in a soluble extract. Employing assays based on the cleavage of labeled ubiquitin protein fusions, a ubiquitin protein peptidase activity from Saccharomyces cerevisiae was purified about 15,000-fold to yield a protein mixture consisting of only a few protein species. The major protein band which comigrated with the activities in in vitro assays has an apparent molecular weight of 29,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two other protein species, about 20,000 and 10,000 in molecular weight, also comigrated with the in vitro activities throughout the purification procedure. Though our most purified protein fraction was shown to cleave various artificial ubiquitin protein fusions under our experimental conditions, it cannot cleave a ubiquitin dimer protein, suggesting the existence of functionally distinct ubiquitin protein peptidases. Our experimental protocol for preparing various labeled ubiquitin protein precursors provides a means to explore various processing enzymes existing in cells. The same protocol may also be adapted to prepare substrates for the study of other specific protein processing enzymes.  相似文献   

11.
Protein Z is a vitamin K-dependent protein of unknown function present in normal human and bovine plasma. Binding and kinetic studies showed that bovine protein Z interacts with bovine thrombin with a dissociation constant of 0.11 microM in a Ca(2+)-independent fashion and that thrombin becomes associated with phospholipid vesicles in the presence of protein Z but not in its absence (Hogg, P. J. and Stenflo, J. (1991) J. Biol. Chem., in press). In the present study the interaction of human protein Z with human thrombin and the influence of human protein Z on the association of thrombin with phospholipid vesicles was evaluated. In contrast to bovine protein Z, human protein Z bound human DIP-thrombin with a 20-fold weaker affinity at 1.5 mM Ca2+ and in a Ca(2+)-dependent fashion. Human protein Z was also less effective than bovine protein Z in promoting the association of thrombin with phospholipid vesicles. Also, bovine protein Z cleaved by thrombin at Arg-365 bound DIP-thrombin with a 10-fold weaker affinity than did native bovine protein Z. The data suggest that the species difference in the interaction between protein Z and thrombin can be explained by a difference in the COOH-terminal region of bovine protein Z versus human protein Z.  相似文献   

12.
Spermine-binding protein (a rat ventral prostatic protein with high affinity for spermine) was phosphorylated in situ through the action of intrinsic cellular protein kinase(s), suggesting it to be a phosphoprotein in vivo. The purified protein served as a substrate in a number of cyclic AMP-independent protein kinase reactions in vitro, but not for cyclic AMP-dependent, Ca2+ + calmodulin-dependent or Ca2+ + phospholipid-dependent protein kinases. Available data indicate that at least one of the cyclic AMP-independent protein kinases (cytosolic protein kinase C2) may be physiologically relevant in mediating the phosphorylation of this protein. The phosphorylation reaction was stimulated several-fold in the presence of spermine. Spermidine was somewhat less effective, whereas putrescine, cadaverine and 1,6-hexanediamine were minimally active. Phospho amino acid analysis of 32P-labelled spermine-binding protein indicated that phosphoserine was the only labelled phospho amino acid. Spermine-binding protein did not undergo autophosphorylation, or modify the stimulative effect of spermine on the phosphorylation of other substrates such as non-histone proteins. In situ the phosphorylation of spermine-binding protein in tissue from castrated rats was markedly diminished as compared with the normal. Since the phosphorylation of spermine-binding protein appears to be mediated by cyclic AMP-independent protein kinase(s) whose activity in the prostate is under androgenic control, it is suggested that androgen-dependent modulation of the protein kinase(s) exerts a regulatory control (via phosphorylation-dephosphorylation) on the spermine-binding activity and stability of this protein in vivo. Further, since this protein is a substrate for only the cyclic AMP-independent protein kinases, it could serve as a tool for the investigation of such kinases.  相似文献   

13.
小麦丛矮病毒是在中国发现的一种植物弹状病毒 ,病毒基因组是由一条单链负链RNA组成并编码 5种病毒结构蛋白质 :表面糖蛋白G、膜基质蛋白M、核衣壳蛋白N、大蛋白L和所谓非结构蛋白NS。后来的研究证明 ,在弹状病毒的模式病毒———水泡性口膜炎病毒中 ,NS蛋白也是一种结构蛋白 ,而且在成熟的病毒粒子中以各种磷酸化形式存在 ,并且证明NS的磷酸化和去磷酸化对病毒基因组的转录和复制的调控起重要的作用。用体外磷酸化方法证明 ,结合于小麦丛矮病毒的核衣壳上的NS蛋白可以被磷酸化 ;同时也证明 ,从大肠杆菌中表达的小麦丛矮病毒的NS蛋白 ,只有在病毒核衣壳存在下才可以体外被磷酸化 ;从而证明 ,小麦丛矮病毒或植物弹状病毒的NS蛋白也是一种磷酸化蛋白质 ,在成熟病毒粒子中可能存在磷酸化和非磷酸化两种形式。病毒的L蛋白除以前报道的具有RNA聚合酶活力外 ,也具有蛋白激酶的活力。  相似文献   

14.
We have developed an artificial protein scaffold, herewith called a protein vector, which allows linking of an in-vitro synthesised protein to the nucleic acid which encodes it through the process of self-assembly. This protein vector enables the direct physical linkage between a functional protein and its genetic code. The principle is demonstrated using a streptavidin-based protein vector (SAPV) as both a nucleic acid binding pocket and a protein display system. We have shown that functional proteins or protein domains can be produced in vitro and physically linked to their DNA in a single enzymatic reaction. Such self-assembled protein-DNA complexes can be used for protein cloning, the cloning of protein affinity reagents or for the production of proteins which self-assemble on a variety of solid supports. Self-assembly can be utilised for making libraries of protein-DNA complexes or for labelling the protein part of such a complex to a high specific activity by labelling the nucleic acid associated with the protein. In summary, self-assembly offers an opportunity to quickly generate cheap protein affinity reagents, which can also be efficiently labelled, for use in traditional affinity assays or for protein arrays instead of conventional antibodies.  相似文献   

15.
A new protein has been isolated from CaCl2/urea extracts of demineralized bovine bone matrix. This protein has five to six residues of the vitamin K-dependent amino acid, gamma-carboxyglutamic acid (Gla), and we have accordingly designated it matrix Gla protein. Matrix Gla protein is a 15,000 dalton protein whose amino acid composition includes a single disulfide bond. The absence of 4-hydroxyproline in matrix Gla protein demonstrates that it is not a precursor to bone Gla protein, 5,800 dalton protein which has a residue of 4-hydroxyproline at position 9 in its sequence. Matrix Gla protein also does not cross-react with antibodies raised against bone Gla protein.  相似文献   

16.
Site-directed mutagenesis and gene replacement procedures were used to construct a mutant strain of Azotobacter vinelandii which expresses a hybrid nitrogenase Fe protein. This hybrid Fe protein has its carboxyl-terminal 18 residues replaced with the 5 analogous residues from the Clostridium pasteurianum Fe protein sequence. The hybrid Fe protein is 13 amino acids smaller than the wild-type A. vinelandii Fe protein and has a net loss of 4 negatively charged residues, resulting in a change in size and charge. The strain which produces the hybrid Fe protein remained capable of diazotrophic growth, albeit at a reduced rate. Also, the purified hybrid Fe protein exhibited a maximum activity about one-half that of native Fe protein. These results demonstrate that the tight, inactive complex which is formed when A. vinelandii MoFe protein and C. pasteurianum Fe protein are mixed in heterologous reconstitution experiments cannot be accounted for only by differences in the A. vinelandii and C. pasteurianum Fe protein primary sequences located at their respective carboxyl termini.  相似文献   

17.
The apparent molecular weight of functional protein S in citrated plasma was observed to be between 115,000 and 130,000 as measured by sedimentation equilibrium in the air-driven ultracentrifuge. The molecular weight of the functional protein decreased to approximately 62,000 when copper ions were added to the plasma. This suggested the presence of a protein S-binding protein in plasma, which was confirmed by gel filtration experiments. Frontal analysis of plasma indicated that functional protein S could exist in as many as three forms. Addition of copper ions to plasma reduced the number of forms to one. In order to isolate the binding protein, plasma was fractionated first on a column of immobilized iminodiacetic acid that had been equilibrated with copper ions. The proteins that eluted in a 0.6 M NaCl wash were passed over a column of protein S immobilized on agarose beads. A protein, eluted in the 0.6 M NaCl wash, was observed to bind to protein S in gel filtration experiments. When added to plasma depleted of both protein S and the binding protein, the binding protein was observed to enhance the anticoagulant activity of activated protein C only in the presence of protein S. Protein S-binding protein was also observed to enhance the rate of factor Va inactivation by activated protein C and protein S.  相似文献   

18.
Iron-induced oxidative stress is thought to play a crucial role in the pathogenesis of Parkinson's disease. Our previous studies demonstrated that decreased expression of ferroportin 1 contributes to 6-hydroxydopamine induced intracellular iron accumulation and that decreased ferroportin 1 expression is caused by increased expression of iron regulatory protein 1. Iron regulatory protein 1 is a central regulator of iron homeostasis and is a likely target of extracellular agents to program changes in cellular iron metabolism. Therefore, the mechanism of iron regulatory protein 1 upregulation induced by 6-hydroxydopamine has become a significant focus of research. Iron regulatory protein 1 is regulated by protein kinase C, although this regulation is tissue specific. Therefore, in the present study, we aimed to determine whether alteration of protein kinase C activity modified iron regulatory protein 1 expression in the dopaminergic MES23.5 cell line, Furthermore, we investigated whether 6-hydroxydopamine induced iron regulatory protein 1 upregulation is mediated by protein kinase C, thus achieving regulation of cellular iron levels. The results showed that iron regulatory protein 1 was upregulated by phorbol 12-myristate-13-acetate, the PKC activator in dopaminergic MES23.5 cells, and ferroportin 1 expression and iron efflux were decreased as a result of iron regulatory protein 1 upregulation. The protein kinase C inhibitor bisindolylmaleimide I hydrochloride abolished the effect of phorbol 12-myristate-13-acetate. Protein kinase C-δ and protein kinase C-ζ, but not protein kinase C-? were activated by 6-hydroxydopamine. The protein kinase C-δ inhibitor rottlerin inhibited protein kinase C-δ phosphorylation and abolished iron regulatory protein 1 upregulation induced by 6-hydroxydopamine. The protein kinase C-ζ pseudo-substrate inhibitor inhibited protein kinase C-ζ phosphorylation and abolished iron regulatory protein 1 upregulation induced by 6-hydroxydopamine. These data indicate that iron regulatory protein 1 is regulated by protein kinase C in dopaminergic MES23.5 cells and that protein kinase C activated by 6-hydroxydopamine regulates iron regulatory protein 1 expression, thus achieving regulation of cellular iron levels.  相似文献   

19.
蛋白质剪切是一种翻译后修饰事件 ,它将插入前体蛋白的中间的蛋白质肽段 (Intein ,internalproteinfrag ment)剪切出来 ,并用正常肽键将两侧蛋白质多肽链 (Extein ,flankingproteinfragments)连接起来。在此过程中不需要辅酶或辅助因子的作用 ,仅需四步分子内反应。Intein及其侧翼序列可以通过突变产生高度特异性的自我切割用于蛋白质纯化、蛋白质连接和蛋白质环化反应 ,在蛋白质工程方面有广泛的应用前景。  相似文献   

20.
To explore the protein kinase family enzymes expressed in cells, we attempted to generate antibodies that could detect a wide variety of protein kinases. For the production of such antibodies, synthetic peptides corresponding to amino acid sequences of a highly conserved subdomain (subdomain VIB) of the protein kinase family were used for immunization. Among the various peptide antigens, a peptide with 16 amino acids, CVVHRDLKPENLLLAS, effectively produced polyclonal antibodies with broad cross-reactivities to protein kinases. Two monoclonal antibodies, designated M8C and M1C, detected a variety of protein kinases such as calmodulin-dependent protein kinase II, calmodulin-dependent protein kinase IV, cAMP-dependent protein kinase, and mitogen-activated protein kinases, on Western blotting. The antibodies also immunoprecipitated various protein kinases in cell extracts. Furthermore, these antibodies could be used for detection of positive clones in the expression cloning of various protein kinases. Among 39 positive clones obtained from mouse brain cDNA library, 36 clones were identified as cDNA clones for various known and novel protein serine/threonine kinases, suggesting that the antibodies reacted highly specifically with various protein kinases. These results indicate that the present monoclonal antibodies directed to multiple protein kinases will be a powerful tool for the detection of a variety of known and novel protein kinases in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号