首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(6):629-642
Macroautophagy is a highly conserved catabolic process that is crucial for organ homeostasis in mammals. However, methods to directly measure macroautophagic activity (or flux) in vivo are limited. In this study we developed a quantitative macroautophagic flux assay based on measuring LC3b protein turnover in vivo after administering the protease inhibitor leupeptin. Using this assay we then characterized basal macroautophagic flux in different mouse organs. We found that the rate of LC3b accumulation after leupeptin treatment was greatest in the liver and lowest in spleen. Interestingly we found that LC3a, an ATG8/LC3b homologue and the LC3b-interacting protein p62 were degraded with similar kinetics to LC3b. However, the LC3b-related proteins GABARAP and GATE-16 were not rapidly turned over in mouse liver, implying that different LC3b homologues may contribute to macroautophagy via distinct mechanisms. Nutrient starvation augmented macroautophagic flux as measured by our assay, while refeeding the animals after a period of starvation significantly suppressed flux. We also confirmed that beclin 1 heterozygous mice had reduced basal macroautophagic flux compared to wild-type littermates. These results illustrate the usefulness of our leupeptin-based assay for studying the dynamics of macroautophagy in mice.  相似文献   

2.
Plant responses to NH4 + stress are complex, and multiple mechanisms underlying NH4 + sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4 + toxicity conditions. When grown under NH4 + stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4 + stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4 +-stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4 +-stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4 +-stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4 + sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.  相似文献   

3.
Subcellular localization of PKA (cAMP-dependent protein kinase or protein kinase A) is determined by protein-protein interactions between its R (regulatory) subunits and AKAPs (A-kinase-anchoring proteins). In the present paper, we report the development of the Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen) as a means to characterize AKAP-based peptide competitors of PKA anchoring. In this assay, the prototypic anchoring disruptor Ht31 efficiently competed in RIIalpha isoform binding with RII-specific and dual-specificity AKAPs (IC50 values of 1.4+/-0.2 nM and 6+/-1 nM respectively). In contrast, RIalpha isoform binding to a dual-specific AKAP was less efficiently competed (IC50 of 156+/-10 nM). Characterization of two RI-selective anchoring disruptors, RIAD (RI-anchoring disruptor) and PV-38 revealed that RIAD (IC50 of 13+/-1 nM) was 20-fold more potent than PV-38 (IC50 of 304+/-17 nM) and did not compete in the RIIalpha-AKAP interaction. We also observed that the kinetics of RII displacement from pre-formed PKA-AKAP complexes and competition of RII-AKAP complex formation by Ht31 differed by an order of magnitude when the component parts were mixed in vitro. No such difference in potency was seen for RIalpha-AKAP complexes. Thus the AlphaScreen assay may prove to be a valuable tool for detailed characterization of a variety of PKA-AKAP complexes.  相似文献   

4.
5.
A new, completely in vivo method of measuring the rate of intestinal phosphate absorption has been developed. As expected from previous in vitro and ex vivo measurements, intestinal phosphate absorption is potently and rapidly stimulated by 1,25-dihydroxyvitamin D3. The response is saturated with as little as 11.3 ng of 1,25-dihydroxyvitamin D3 per day, consistent with a genomic mechanism. The effect of 1,25-dihydroxyvitamin D3 disappears when the dosing solution of phosphate is at 2 M, suggesting that 1,25-dihydroxyvitamin D3 stimulates active transport of phosphate but not diffusion of phosphate. Finally, unlike findings resulting from in vitro or ex vivo experiments, no evidence in vivo was obtained that phosphate absorption requires sodium or is inhibited by potassium.  相似文献   

6.
Calcium signaling in platelets is an important physiological response to various aggregation stimuli. Loading platelets with various fluorescent dyes and measuring the change in calcium concentration using a spectrofluorometer has been the traditional approach to studying calcium signaling. This method suffers from the need for large platelet samples and a decrease in total fluorescence signal with time due to photobleaching. Therefore, it is rarely used to measure the quantitative effect of an agonist or antagonist on calcium signaling. Adaptation of these measurements to a fluorescent imaging plate reader (FLIPR) format allows the sample size to be reduced by 5- to 10-fold, and the microplate format allows a significant increase in throughput. Addition of the agonists to all wells simultaneously serves to normalize the total response. This article describes the first use of a FLIPR to study the calcium flux in human platelets. The IC(50) values showed a linear correlation with the K(i) for receptor binding in washed platelets. The generality of the methodology was shown by measuring EC(50) values for agonists and IC(50) values for antagonists of the platelet G protein-coupled receptor P2Y(1) and for the ion channel P2X(1).  相似文献   

7.
Amyloid-β peptide (Aβ) is the amyloid component of senile plaques in Alzheimer disease (AD) brains. Recently a soluble oliomeric form of Aβ in Aβ precursor protein transgenic mouse brains and AD brains was identified as a potential causative molecule for memory impairment, suggesting that soluble Aβ oligomers cause neurodegeneration in AD. Further characterization of this species has been hampered, however, because the concentrations are quite small and it is difficult to monitor Aβ oligomers specifically. Here we developed a novel method for monitoring Aβ oligomers using a split-luciferase complementation assay. In this assay, the N- and C-terminal fragments of Gaussia luciferase (Gluc) are fused separately to Aβ. We found that conditioned media from both N- and C-terminal fragments of Gluc-tagged Aβ1-42 doubly transfected HEK293 cells showed strong luminescence. We used gel filtration analyses to analyze the size of oligomers formed by the luciferase complementation assay, and found that it matched closely with oligomers formed by endogenous Aβ in Tg2576 neurons. Large oligomers (24-36-mers), 8-mers, trimers, and dimers predominate. In both systems, Aβ formed oligomers intracellularly, which then appear to be secreted as oligomers. We then evaluated several factors that might impact oligomer formation. The level of oligomerization of Aβ1-40 was similar to that of Aβ1-42. Homodimers formed more readily than heterodimers. The level of oligomerization of murine Aβ1-42 was similar to that of human Aβ1-42. As expected, the familial AD-linked Arctic mutation (E22G) significantly enhanced oligomer formation. These data suggest that Gluc-tagged Aβ enables the analysis of Aβ oligomers.  相似文献   

8.
A rapid and specific assay has been developed for UDPglucose-collagen glucosyltransferase (UDPglucose: 5-hydroxylysine-collagen glucosyltransferase, EC 2.4.1.66) using galactosylhydroxylysine (Gal-Hyl) as acceptor. Studies with intact human platelets and isolated plasma membranes indicated that about 5--10% of the total activity was surface bound and the rest was of cytoplasmic origin. The two forms of the enzyme had similar broad pH optima (6.5--8.0), Km values for UDPglucose (5 muM) and Gal-Hyl (approx. 4 mM) and for optimal manganese concentrations (25 mM). The soluble form of the enzyme was purified 80-fold. The reaction mechanism was determined as being rapid equilibrium random BiBi + dead end complex or ordered BiBi with UDPglucose being the first substrate to bind. Using Gal-Hyl bound in purified alpha 1 chain of chick skin collagen, a Km value three orders of magnitude less (2 muM) was found than for free Gal-Hyl and the manganese requirement decreased to 2 mM. These results suggest that the binding to the enzyme of Gal-Hyl in the collagen molecule is enhanced by the presence of the protein portion so that the enzyme may be capable of recognizing not only the carbohydrate side chains but also the primary structure of collagen.  相似文献   

9.
SARS main protease is essential for life cycle of SARS coronavirus and may be a key target for developing anti-SARS drugs. Recently, the enzyme expressed in Escherichia coli was characterized using a HPLC assay to monitor the formation of products from 11 peptide substrates covering the cleavage sites found in the SARS viral genome. This protease easily dissociated into inactive monomer and the deduced Kd of the dimer was 100 microM. In order to detect enzyme activity, the assay needed to be performed at micromolar enzyme concentration. This makes finding the tight inhibitor (nanomolar range IC50) impossible. In this study, we prepared a peptide with fluorescence quenching pair (Dabcyl and Edans) at both ends of a peptide substrate and used this fluorogenic peptide substrate to characterize SARS main protease and screen inhibitors. The fluorogenic peptide gave extremely sensitive signal upon cleavage catalyzed by the protease. Using this substrate, the protease exhibits a significantly higher activity (kcat = 1.9 s(-1) and Km = 17 microM) compared to the previously reported parameters. Under our assay condition, the enzyme stays as an active dimer without dissociating into monomer and reveals a small Kd value (15 nM). This enzyme in conjunction with fluorogenic peptide substrate provides us a suitable tool for identifying potent inhibitors of SARS protease.  相似文献   

10.
Synthetic peptides derived from a 45-kDa glycoprotein antigen of Mycobacterium tuberculosis were shown to function as glycosyltransferase acceptors for mannose residues in a mannosyltransferase cell-free assay. The mannosyltransferase activity was localized within both isolated membranes and a P60 cell wall fraction prepared from the rapidly growing mycobacterial strain, Mycobacterium smegmatis. Incorporation of radiolabel from GDP-[(14)C]mannose was inhibited by the addition of amphomycin, indicating that the glycosyl donor for the peptide acceptors was a member of the mycobacterial polyprenol-P-mannose (PPM) family of activated glycosyl donors. Furthermore, a direct demonstration of transfer from the in situ generated PP[(14)C]Ms was also demonstrated. It was also found that the enzyme activity was sensitive to changes in overall peptide length and amino acid composition. Because glycoproteins are present on the mycobacterial cell surface and are available for interaction with host cells during infection, protein glycosyltransferases may provide novel drug targets. The development of a cell-free mannosyltransferase assay will now facilitate the cloning and biochemical characterisation of the relevant enzymes from M. tuberculosis.  相似文献   

11.
12.
The ability of a chimeric HP1-Polycomb (Pc) protein to bind both to heterochromatin and to euchromatic sites of Pc protein binding was exploited to detect stable protein-protein interactions in vivo. Previously, we showed that endogenous Pc protein was recruited to ectopic heterochromatic binding sites by the chimeric protein. Here, we examine the association of other Pc group (Pc-G) proteins. We show that Posterior sex combs (Psc) protein also is recruited to heterochromatin by the chimeric protein, demonstrating that Psc protein participates in direct protein-protein interaction with Pc protein or Pc-associated protein. In flies carrying temperature-sensitive alleles of Enhancer of zeste[E(z)] the general decondensation of polytene chromosomes that occurs at the restrictive temperature is associated with loss of binding of endogenous Pc and chimeric HP1-Polycomb protein to euchromatin, but binding of HP1 and chimeric HP1-Polycomb protein to the heterochromatin is maintained. The E(z) mutation also results in the loss of chimera-dependent binding to heterochromatin by endogenous Pc and Psc proteins at the restrictive temperature, suggesting that interaction of these proteins is mediated by E(z) protein. A myc-tagged full-length Suppressor 2 of zeste [Su(z)2] protein interacts poorly or not at all with ectopic Pc-G complexes, but a truncated Su(z)2 protein is strongly recruited to all sites of chimeric protein binding. Trithorax protein is not recruited to the heterochromatin by the chimeric HP1-Polycomb protein, suggesting either that this protein does not interact directly with Pc-G complexes or that such interactions are regulated. Ectopic binding of chimeric chromosomal proteins provides a useful tool for distinguishing specific protein-protein interactions from specific protein-DNA interactions important for complex assembly in vivo.  相似文献   

13.
Autophagy is an evolutionarily conserved pathway mediating the breakdown of cellular proteins and organelles. Emphasizing its pivotal nature, autophagy dysfunction contributes to many diseases; nevertheless, development of effective autophagy modulating drugs is hampered by fundamental deficiencies in available methods for measuring autophagic activity or flux. To overcome these limitations, we introduced the photoconvertible protein Dendra2 into the MAP1LC3B locus of human cells via CRISPR/Cas9 genome editing, enabling accurate and sensitive assessments of autophagy in living cells by optical pulse labeling. We used this assay to perform high-throughput drug screens of four chemical libraries comprising over 30,000 diverse compounds, identifying several clinically relevant drugs and novel autophagy modulators. A select series of candidate compounds also modulated autophagy flux in human motor neurons modified by CRISPR/Cas9 to express GFP-labeled LC3. Using automated microscopy, we tested the therapeutic potential of autophagy induction in several distinct neuronal models of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In doing so, we found that autophagy induction exhibited discordant effects, improving survival in disease models involving the RNA binding protein TDP-43, while exacerbating toxicity in neurons expressing mutant forms of UBQLN2 and C9ORF72 associated with familial ALS/FTD. These studies confirm the utility of the Dendra2-LC3 assay, while illustrating the contradictory effects of autophagy induction in different ALS/FTD subtypes.  相似文献   

14.
A native female-specific chemoreceptive protein of a swallowtail butterfly [oviposition stimulant binding protein (OSBP)] was shown to specifically bind to aristolochic acid, a main stimulant for oviposition from its host plant. Oviposition stimulants are recognized by chemoreceptive organs of insects. OSBP isolated previously from the chemoreceptive organs was assumed to bind to an oviposition stimulant. Using a highly sensitive fluorescent micro-binding assay, we clarified OSBP bound to aristolochic acid. Three-dimensional molecular modeling revealed the structure of the OSBP-aristolochic acid complex. This is the first report of a native chemoreceptive protein binding to an oviposition stimulant as a ligand in insects.  相似文献   

15.
16.
The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity.  相似文献   

17.
Quantitative assessment of the spontaneous or induced genomic mutation rate, a fundamental evolutionary parameter, usually requires the use of well-characterized mutant selection systems. Although there is a great number of genetic selection schemes available in Escherichia coli, the selection of D-cycloserine resistant mutants is shown here to be particularly useful to yield a general view of mutation rates and spectra. The combination of a well-defined experimental protocol with the Ma-Sandri-Sarkar maximum likelihood method of fluctuation analysis results in reproducible data, adequate for statistical comparisons. The straightforward procedure is based on a simple phenotype-genotype relationship, and detects mutations in the single-copy, chromosomal cycA gene, involved in the uptake of D-cycloserine. In contrast to the widely used rifampicin resistance assay, the procedure selects mutations which are neutral in respect of cell growth. No specific genetic background is needed, and practically the entire mutation spectrum (base substitutions, frameshifts, deletions, insertions) can simultaneously be measured. A systematic analysis of cycA mutations revealed a spontaneous mutation rate of 6.54 x 10(-8) in E. coli K-12 MG1655. The mutation spectrum was dominated by point mutations (base substitutions, frameshifts), spread over the entire gene. IS insertions, caused by IS1, IS2, IS3, IS4, IS5 and IS150, represented 24% of the mutations.  相似文献   

18.
The Thermofluor assay has been a valuable asset in structural genomics, providing a high-throughput method for assessing the crystallizability of proteins. The technique has been well characterized for soluble proteins but has been less extensively described for membrane proteins. Here we show the successful application of a Thermofluor-based stability assay to an ion channel, CorA from Methanococcus jannaschii. Optimization of the concentration of free detergent within the assay was important, as excessive concentrations mask the fluorescence change associated with thermal unfolding of the protein. CorA was shown to be stabilized by low pH, but relatively insensitive to salt concentration. Divalent metal cations were also capable of stabilizing the protein, in the order Co2+>Ni2+>Mn2+>Mg2+>Ca2+. Finally, removal of the oligohistidine tag was also shown to improve the thermal stability of CorA. Conclusions are drawn from this detailed study about the general applicability of this technique to other membrane proteins.  相似文献   

19.
CGS 8515 inhibited 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 synthesis in guinea pig leukocytes (IC50 = 0.1 microM). The compound did not appreciably affect cyclooxygenase (sheep seminal vesicles), 12-lipoxygenase (human platelets), 15-lipoxygenase (human leukocytes) and thromboxane synthetase (human platelets) at concentrations up to 100 microM. CGS 8515 inhibited A23187-induced formation of leukotriene products in whole blood (IC50 values of 0.8 and 4 microM, respectively, for human and rat) and in isolated rat lung (IC50 less than 1 microM) in vitro. The selectivity of the compound as a 5-lipoxygenase inhibitor was confirmed in rat whole blood by the 20-70-fold separation of inhibitory effects on the formation of leukotriene from prostaglandin products. Ex vivo and in vivo studies with rats showed that CGS 8515, at an oral dose of 2-50 mg/kg, significantly inhibited A23187-induced production of leukotrienes in whole blood and in the lung. The effect persisted for at least 6 h in the ex vivo whole blood model. CGS 8515, at oral doses as low as 5 mg/kg, significantly suppressed exudate volume and leukocyte migration in the carrageenan-induced pleurisy and sponge models in the rat. Inhibitory effects of the compound on inflammatory responses and leukotriene production in leukocytes and target organs are important parameters suggestive of its therapeutic potential in asthma, psoriasis and inflammatory conditions.  相似文献   

20.
We describe an assay to measure the extent of enzymatic unwinding of DNA by a DNA helicase. This assay takes advantage of the quenching of the intrinsic protein fluorescence of Escherichia coli SSB protein upon binding to ssDNA and is used to characterize the DNA unwinding activity of recBCD enzyme. Unwinding in this assay is dependent on the presence of recBCD enzyme and linear dsDNA, is consistent with the known properties of recBCD enzyme, and closely parallels other methods for measuring recBCD enzyme helicase activity. The effects of varying temperature, substrate concentrations, enzyme concentration, and mono- and divalent salt concentrations on the helicase activity of recBCD enzyme were characterized. The apparent Km values for recBCD enzyme helicase activity on linear M13 dsDNA molecules at 25 degrees C are 0.6 nM dsDNA molecules and 130 microM ATP, respectively. The apparent turnover number for unwinding is approximately 15 microM base pairs s-1 (microM recBCD enzyme)-1. When this rate is corrected for the observed stoichiometry of recBCD enzyme binding to dsDNA, kcat for helicase activity corresponds to an unwinding rate of approximately 250 base pairs of DNA s-1 (functional recBCD complex)-1 at 25 degrees C. At 37 degrees C, the apparent Km value for dsDNA molecules was the same as that at 25 degrees C, but the apparent turnover number became 56 microM base pairs s-1 (microM recBCD enzyme)-1 [or 930 base pairs s-1 (functional recBCD complex)-1 when corrected for observed stoichiometry]. With increasing NaCl concentration, kcat peaks at 100 mM, and the apparent Km value for dsDNA increases by 3-fold at 200 mM NaCl. In the presence of 5 mM calcium acetate, the apparent Km value is increased by 3-fold, and kcat decreased by 20-30%. We have also shown that recBCD enzyme molecules are able to catalytically unwind additional dsDNA substrates subsequent to initiation, unwinding, and dissociation from a previous dsDNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号